Электромагнитное реле переменного тока


Реле переменного тока – принципы работы и разновидности

Реле переменного тока твердотельное

Схемотехника различных электрических и электро-механических устройств предполагает наличие элемента, который должен в определенный момент времени включать и отключать подачу электрического тока. Если говорить техническим языком, то релейный элемент – это устройство с несколькими состояниями равновесия, каждое из которых может быть сменено на другое при определенных внешних воздействиях или направленном управлении.

Реле переменного тока – прибор для коммутации в автоматическом режиме для электрических цепей по управляющему сигналу. Помимо этого эти устройства могут дополнительно выступать в роли усилителей, элементами управления  к электродвигателям и исполнительным устройствам.

Основные рабочие характеристики

Итак, реле переменного тока является промежуточным элементом, который приводит в действие управляемую электрическую цепь.

Для этого устройства характерны следующие параметры:

  • Мощность срабатывания (Р ср – измеряется в Ваттах) – ток минимальной мощности, который должен подаваться на реле для его нормальной активации. Номинально этот параметр подбирается согласно общим конструктивным и электрическим параметрам реле.
  • Мощность управления (Р упр – измеряется в Ваттах) – максимальная мощность тока, которую способно передать реле в коммутируемой сети. Данное значение определяется параметрами рабочих контактов реле.

Совет! Не сложно догадаться, что при выборе реле для сети ориентируются на названные параметры, которые для определенных конструкций являются постоянными.

  • Время срабатывания (Т ср – измеряется в секундах) – разница во времени от момента поступления сигнала на управляющий контакт до смыкания или размыкания контактов.
  • Допустимая разрывная мощность (Р р – измеряется в Ваттах) – этот параметр можно встретить в сильноточных реле. Он обозначает мощность при определенном токе, которая при разрыве не позволит создать устойчивую электрическую дугу.

Как работает реле

Диаграмма работы реле во времени

Для управляющей цепи и самого реле характерна некоторая инертность, из-за чего входной ток на реле растет и убывает не мгновенно, а изменяется в некоторых пределах в течение времени, что прекрасно видно на показанной выше схеме, из которой так же понятно, что рабочий цикл состоит из трех этапов:

  • Срабатывание;
  • Работа;
  • Возврат.

Давайте в качестве примера, для понимания основных принципов возьмем электромагнитное реле постоянного тока.

Назад в будущее: реле из 1983 года
  • Внутри такого реле имеется катушка индуктивности, благодаря которой и происходит постепенное изменение параметров тока. Сама же работа реле для каждого этапа складывается из определенных временных отрезков.
  • Срабатывание – имеет два таких интервала: время трогания (tтр) и время на движение якоря(tдв). То есть Т ср = tтр+tдв – все просто.
  • Работа – также два участка, которые обозначены на временной линии отрезками АВ и ВС. На первом этапе ток продолжает еще какое-то время расти, пока не будет достигнуто установленное значение, что позволяет обеспечить надежное притяжение между якорем и сердечником, препятствующим вибрации якоря. На втором участке никаких изменений величины тока не происходит.
  • Возврат – аналогично, 2 участка. На первом происходит отпускание реле, а на втором – возврат в исходное состояние. На протяжении всего периода сила тока падает.
Трехфазное реле переменного тока

Прочие характеристики

Помимо перечисленного, у реле разных типов в ходу следующие параметры:

  • Коэффициент возврата (Kb) – отношение отпускающего тока к срабатывающему. Обычно данное значение варьируется от 0,4 до 0,8. Рассчитывается по формуле: Iот/Iср < 1.
  • Коэффициент запаса (К зап) – это отношение тока установившегося (I уст), то есть максимального  к току срабатывания. Это значение  показывает, насколько надежен выбранный прибор.
  • Последний параметр называется коэффициентом управления (К упр) и представлен отношением мощности управления к мощности срабатывания. То есть если реле используется как усилитель, то мы видим коэффициент этого усиления.

Разновидности электрических реле

Реле контроля изоляции переменного тока следит за уровнем сопротивления изоляции

Все реле можно разделить по нескольким признакам, и делят их:

  • По назначению – тут можно встретить варианты предназначенные для защиты, управления или сигнализации.
  • По принципу действия. Тут список будет куда шире: электромагнитные нейтральные; электромеханические; поляризованные электромагнитные; магнитоэлектрические; индукционные, электротермические; электродинамические; бесконтактные магнитные; фотоэлектронные и электронные, а также другие.
Реле времени переменного тока
  • Делят также эти устройства по замеряемым величинам. Замеряться может электрический ток – его мощность, частота, сопротивление, напряжение, сила, коэффициент мощности. Слежение может происходить и за механическими параметрами: объем, сила, давление, скорость, уровень и прочее. Физическими величинами – температура. Временем.
  • Естественно, разные устройства рассчитаны на отличающуюся мощность управления. Тут представлено три типа: малой мощности – приборы до 1 Вт; средней – от 1 до 10 Вт; высокой мощности – все, что выше 10 Вт.
  • Важным параметром, характеризующим разные модели является время срабатывания прибора. Тут представлено 4 категории: самые быстрые безынерционные модели, чье время на срабатывание составляет меньше 0,001 секунды; далее идут быстродействующие – от 0,001 до 0,05 секунды; замедленные – от 0,15 до 1 секунды; реле времени, которым требуется больше 1 секунды.

Наибольшее распространение получили электромеханические реле, в которых при подаче управляющего тока происходит перемещение подвижной части, называемой якорем, в результате чего происходит замыкание управляемой цепи.

Электромагнитные реле

Данный тип реле делится на два вида – постоянного и переменного тока. Давайте сначала немного побеседуем про первый тип, который бывает нейтральным или поляризованным.

  • Суть первого варианта заключается в том, что устройство одинаково реагирует на протекающий ток на его обмотке в разных направлениях, а это значит, что усилие на якоре никак не зависит от направления тока.
  • Эти устройства разделяются еще на два типа, в зависимости от движения, которое совершает якорь. Существуют механизмы с угловым движением и втяжным.
Данное втягивающее реле можно встретить на стартере автомобиля ВАЗ 2110
  • Принцип работы устройства предельно прост. При отсутствии управляющего тока якорь отстоит от сердечника на максимальном расстоянии и удерживается в таком положении за счет пружины возврата. В это время на реле будут сомкнуты размыкающие контакты и разомкнуты замыкающие.
  • В момент, когда подается ток в обмотку, он проходит через сердечник, якорь, ярмо и воздушный зазор, при этом создается магнитное усилие, которое притягивает якорь к сердечнику, преодолевая сопротивление пружины.
  • Якорь взаимодействует с колодкой, из-за чего замыкающие контакты смыкаются, а размыкающие, соответственно, разъединяются.

Конструкция реле и тип применяемых контактов будут отличаться в зависимости от токов, на работу с которыми оно рассчитано. В случае маломощных устройств (связи, сигнализации, телемеханики) применяются контакты малой мощности, изготавливаемые из нейзильбера с контактными площадками (наклепанными) из вольфрама или серебра или фосфоритной бронзы.

Наклепки на контактах также могут быть изготовлены из золота, платины, палладия и прочих сплавов, их форма плоская или плоская цилиндрическая.

Контактное реле для автомобиля

В случае средних токов от 0,5 до 5 Ампер ставят контакты из тугоплавких металлов и их сплавов, например, платина-иридий, вольфрам, золото-палладий и прочие.

Беспроводное реле на 16 Ампер

Когда предполагается работа с большими токами, контакты делают медными или из механических смесей, изготавливаемых методом спекания порошков (металлокерамика).

Механическая и тяговая характеристики устройств

За время срабатывания реле меняется длина на воздушном зазоре, а значит, меняется и электромагнитное воздействие на якорь. Данная зависимость называется тяговой характеристикой и выражается формулой: Fэ = f(d).

Тяговая характеристика на диаграмме

Если не брать в расчет сопротивление элементов магнитопровода, изготовленных из стали, то тяговая характеристика должна, по идее, иметь форму гиперболы, однако магнитное сопротивление на воздушном зазоре Rмd при его уменьшении также снижается и сравнивается с сопротивлением магнитопровода Rмст. Исходя из этого, магнитное усилие не может быть больше, чем некая максимальная величина Fэ max. Не противоречит логике, что при самом большом значении воздушного зазора Fэ будет минимальным.

Когда отключается питание обмотки реле, на магнитопроводе остается намагничивание, из-за которого якорь может залипнуть. Чтобы избавиться от этого эффекта применят штифт из немагнитного материала.

Механическая характеристика реле
  • Фактически, работа реле заключается в соединении и разъединении контактов, которых может быть 2 и намного больше. Во время перемещения якоря происходит рост силы упругости возвратной и контактных пружин. Эти силы будут иметь разное значение в зависимости от положения якоря и величины воздушного зазора. Данная зависимость носит название механической характеристики реле.
  • Во время запуска реле, якорь первым преодолевает сопротивление возвратной пружины – на графике выше это усилие отмечено участком ab.
  • На следующем участке bc отмечено усилие на ход до первой контактной пружины. Участок cd – преодоление совместного сопротивления двух пружин.
  • Логично предположить, что тяговая характеристика у нормально работающего реле должна быть выше механической.

Интересно знать! В мощных устройствах процесс разъединения протекает намного сложнее первичного коммутирования, так как возникшая электродвижущая сила стремиться удержать значение текущего в управляемой цепи тока. В итоге в момент разъединения может образовываться искрение, а то и вовсе дуговой разряд, очень вредный для контактов реле.

Для того чтобы нейтрализовать описанный эффект используется либо увеличение активного сопротивления, либо специальные конструкции приборов.

Реле поляризованного типа

На фото — электромагнитное поляризованное реле

Работа таких устройств от описанных до этого отличается тем, что направление в котором действует электромагнитная сила меняется в зависимости от полярности тока, подаваемого на обмотку. Данный принцип реализуется посредством постоянного магнита. Подобных реле на рынке представлено великое множество, но все они делятся на мостовые и дифференциальные.

Также их можно разделить на три типа по настройке контактов:

  • Двухпозиционные модели;
  • Двухпозиционные с преобладанием вправо или влево;
  • Трехпозиционные, имеющие зону нечувствительности.
Принцип действия двухпозиционного поляризованного реле

По представленной схеме можно понять, как работают такие реле:

  • С разных сторон на сердечнике намотаны две катушки, обозначенные как 1.
  • При подключении они создают устойчивое магнитное поле (Fэ) в ярме (2).
  • Постоянный магнит (3) также имеет магнитное поле Ф0(п).
  • В момент, когда якорь находится в центральном (нейтральном) положении ток на катушки не подается, и магнитный поток от постоянного магнита разбивается на 2 одинаковые части (Ф01 и Ф02), а значит, тяговая сила будет отсутствовать.
  • Как только на обмотку подается питание, образующееся магнитное поле на ярме начнет выдавать результирующее поле, прибавляясь или отнимаясь от Ф01 и Ф02, в зависимости от полярности питания.
  • Как только одно поле начинает преобладать над другим, возрастает тяговая сила, а значит, якорь начинает движение влево или вправо.

К неоспоримым достоинствам таких реле можно отнести высокую чувствительность, быстрое срабатывание, высокий коэффициент управления. К недостаткам относятся, разве что, большие габариты, сложная конструкция и цена.

Реле электромагнитные переменного тока

Оптореле переменного тока

Реле электромагнитные переменного тока, как несложно догадаться, отличается от постоянных моделей тем, что могут работать от электрических сетей с частотой тока от 50 до 400 Гц. Обозначение переменного тока на реле рисуется в виде волнистой черты. Тот же символ можно встретить и в схемотехнике – он помещается в кружочек (см. рисунок ниже).

Схематическое изображение реле переменного тока

Работает такое реле по следующей схеме:

  • Переменный ток подается на обмотку, после чего якорь также притягивается к сердечнику.
  • Почему контакт не размыкается при смене направления движения тока?
  • Потому что тяговое усилие будет пропорционально квадрату силы намагничивания, а значит, и квадрату тока, текущего по обмотке.
  • Получаем, что направление тягового усилия не зависит от направления тока.
Как меняется тяговое усилие при перемене направления тока
  • Если представить себе два реле (постоянного и переменного тока) одинаковых размеров и с одинаковыми значениями самой высокой индукции, то тяговая сила у последнего будет в два раза меньше, так как оно вынуждено постоянно пульсировать с удвоенной частотой, опускаясь до нуля каждый раз, когда ток меняет свое направление, то есть 2 раза за такт.
  • Из-за этого якорю реле приходится постоянно вибрировать, что вызывает быстрый износ детали. Чтобы избавиться от этого эффекта устанавливаются дифференциальные сердечники и фазосдвигающие детали, которые не дают магнитному потоку переходить через нуль.
  • Сердечник может быть расщепленным с короткозамкнутой обмоткой, то есть конец элемента имеет пропил, делящий его на две части. На одну из таких частей и устанавливается короткозамкнутая обмотка из одного или пары витков.
  • Во время работы реле переменное магнитное поле делится на две части (Ф1 и Ф2), одна из которых (Ф2) создает в к.з. витке ЭДС, после чего образуется еще одно магнитное поле (Фкз), воздействующее на поле ЭДС создающее (Ф2), в результате чего оно начнет отставать от первого потока (Ф1). Данный сдвиг будет в пределах 60-80 градусов, а значит результирующее поле (Fэ), создающее тяговую силу, никогда не упадет до нуля, и тем более не сменит своего направления.

Чтобы реле переменного тока работало надежно, без вибраций его параметры рассчитываются так, чтобы усилие Fэ min было максимально большим.

Из полученной информации можно сделать вывод о том, что такие реле имеют куда худшие параметры по сравнению с постоянными по тяговому усилию и чувствительности. Добавьте сюда усложненную конструкцию, и как следствие более высокую цену.

Однако и достоинство у таких реле хоть и одно, но неоспоримое – возможность применения в общественных сетях.

Итак, подведем итоги. Мы разобрали назначение реле, их принципы работы, основные виды и узнали, чем отличается реле управляемое переменным током от постоянного. Информации было много, но только на первый взгляд, поэтому рекомендуем углубиться в тему, просмотрев предложенное видео.

Электромагнитные реле переменного тока

В тех случаях, когда основным источником энергии является сеть переменного тока, желательно применять реле, обмотки которых питаются переменным током. При подаче в обмотку реле переменного тока якорь будет притягиваться к сердечнику так же, как и при постоянном токе под действием электромагнитной силы Fэ, пропорциональной магнитному потоку Фδ, возникающему в зазоре между якорем и сердечником и создаваемому при протекании тока в обмотке электромагнита:

Так как ток в обмотке электромагнита переменный, то и магнитный поток Фδ, создаваемый этим током в рабочем зазоре, будет также переменным, т. е.

После преобразований получим

или

где μ0 — магнитная постоянная.

Применение короткозамкнутого витка (экрана), охватывающего часть конца сердечника (расщепленный сердечник), является наиболее эффективным способом устранения вибрации якоря реле.

На рис. 6.4 изображена схема реле переменного тока с короткозамкнутым витком (контакты реле и выводы обмотки на схеме не показаны). Конец сердечника, обращенный к якорю, расщеплен на две части, на одну из которых надета короткозамкнутая обмотка — экран Э (один или несколько витков).

Рисунок 6.4. Схема реле переменного тока с короткозамкнутым витком

Принцип работы реле заключается в следующем. Переменный магнитный поток Фосн основной обмотки wосн, проходя через разрезанную часть сердечника, делится на две части. Часть потока Ф2 проходит через экранированную половину полюса сечением Sδ2, в которой размещается короткозамкнутая обмотка (экран), а другая часть потока Ф1 проходит через неэкранированную половину полюса сечением Sδ1. Поток Ф2 наводит в короткозамкнутом витке ЭДС екз, которая создает ток Iкз. При этом возникает еще один магнитный поток Фкз, который воздействует на магнитный поток Ф2 и вызывает его отставание относительно потока Ф1 по фазе на угол φ = 60... 80°. Благодаря этому результирующее тяговое усилие Fэ никогда не доходит до нуля, так как потоки проходят через нуль в разные моменты времени.

6.2. Поляризованные электромагнитные реле

В отличие от рассмотренных ранее нейтральных электромагнитных реле, у поляризованного реле направление электромагнитного усилия зависит от полярности сигнала постоянного тока в обмотке. Поляризация этих реле осуществляется при помощи постоянного магнита.

Существует много конструктивных разновидностей поляризованных реле, которые классифицируются по ряду признаков. По конструктивной схеме магнитной цепи различают реле с последовательной, параллельной (дифференциальной) и мостовой магнитными цепями, по числу обмоток управления — одно и многообмоточные, по способу настройки контактов (числу устойчивых положений якоря) — двух- и трехпозиционные.

Поляризованные реле могут быть использованы также в качестве вибропреобразователей, но наибольшее распространение они получили в маломощной автоматике, особенно в следящих системах при управлении реверсивными двигателями.

К числу достоинств поляризованных реле относятся:

  • высокая чувствительность, которая характеризуется малой мощностью срабатывания и составляет 10-5 Вт;

  • большой коэффициент управления;

  • малое время срабатывания (единицы миллисекунд).

Недостатки по сравнению с нейтральными электромагнитными реле следующие:

  • несколько сложнее конструкция;

  • большие габаритные размеры, вес и стоимость.

В поляризованных реле используют дифференциальные и мостовые схемы магнитных цепей, которые имеют много разновидностей (название цепей определяется типом электрической схемы замещения электромагнитной системы). На рис. 6.5 изображено поляризованное реле с дифференциальной схемой магнитной цепи.

Рисунок 6.5. Поляризованное реле с дифференциальной схемой магнитной цепи: 1,1’ - намагничивающие катушки; 2- ярмо; 3- постоянный магнит;

4- якорь; 5,5’- контакты.

На якорь реле действует два независимых друг от друга потока: поток Ф0(п), создаваемый постоянным магнитом 3 и не зависящий от рабочего состояния схемы, в которую включено реле, и рабочий (управляющий) поток Фэ(р), создаваемый намагничивающими катушками 1 и 1’ и зависящий от тока, протекающего по их обмоткам.

Электромагнитное усилие, действующее на якорь 4, зависит, таким образом, от суммарного действия потоков Фэ(р) и Ф0(п). Изменение направления электромагнитного усилия при изменении полярности тока в рабочей обмотке происходит вследствие того, что изменяется направление рабочего потока относительно поляризующего.

Поляризующий поток Ф0(п) проходит по якорю и разветвляется на две части — Ф01 и Ф02 в соответствии с проводимостями воздушных зазоров слева δЛ и справа δпр от якоря. В зависимости от полярности управляющего сигнала рабочий поток Фэ(р) вычитается из потока Ф01 в зазоре слева от якоря и прибавляется к потоку Ф02 справа от якоря (как показано на рис. 6.5), или наоборот. В случае, показанном на рисунке, якорь перекинется из левого положения в правое. При выключении сигнала якорь будет находиться в том положении, которое он занимал до выключения сигнала. Таким образом, результирующее электромагнитное усилие, действующее на якорь, будет направлено в строну того зазора, где магнитные потоки суммируются.

Поляризованные реле находят широкое применение в схемах автоматики благодаря своим характерным особенностям. Наличие нескольких обмоток позволяет использовать их в качестве логических элементов, небольшая мощность срабатывания — в качестве элементов контроля небольших электрических сигналов, малое время срабатывания и чувствительность к полярности входных сигналов — в качестве амплитудных модуляторов и демодуляторов. Благодаря высокой чувствительности поляризованные реле часто используют в маломощных цепях переменного тока с включением через выпрямитель.

8. Электромагнитные реле переменного тока

В предыдущих параграфах рассматривалась работа реле при питании от сети постоянного тока. При подаче в обмотку реле переменного тока якорь также будет притягиваться к сердечнику. Это объясняется тем, что, согласно уравнению (12), электромагнитное тяговое усилие пропорционально квадрату МДС, а значит, и квадрату тока в обмотке. Поэтому, хотя переменный ток периодически меняет свое направление, знак тягового усилия не будет зависеть от направления тока. Таким образом, всегда будет действовать именно сила притяжения, а не сила отталкивания. Переменный ток, протекая по обмотке реле, создает в рабочем зазоре переменный магнитный поток

(25)

Подставляя (25) в уравнение (13), получим

(26)

где

(27)

На рис. 14 показаны графики изменения тока t от времени в обмотке реле и электромагнитного тягового усилия . Якорь притягивается к сердечнику под действием среднего значения электромагнитного усилия, т. е. его постоянной составляющей , показанной на рис. 14 прямой линией. Величина определяется из уравнения (26), если заменить на :

(28) где

, (29)

а переменная составляющая изменяется с двойной частотой.

Из уравнения (29) видно, что при одинаковых конструктивных размерах реле и равных значениях максимальной магнитной индукции среднее значение электромагнитного усилия реле переменного тока вдвое меньше, чем реле постоянного тока. Дважды за период электромагнитное усилие обращается в нуль. Следовательно, якорь реле может вибрировать, периодически оттягиваясь от сердечника возвратной пружиной. Конечно, из-за массы якоря сила инерции не позволяет ему совершать колебательные движения. Периодическое изменение силы тяги появляется именно как дрожание якоря, сопровождаемое характерным гудением на частоте 100 Гц (при питании от сети промышленной частоты 50 Гц). В реле переменного тока для устранения вибрации якоря применяются специальные конструктивные меры. Следует также отметить, что наличие переменного потока в магнитопроводе реле приводит к появлению вихревых токов в стали. Эти токи нагревают сердечник, ярмо и якорь реле, на что бесполезно расходуется энергия. Для уменьшения вихревых токов и потерь энергии магнитопровод набирается из отдельных тонких (толщиной 0,5 или 0,35 мм) листов электротехнической стали, которые изолируют друг от друга, что увеличивает сопротивление на пути вихревых токов, уменьшает сечение стали на этом пути.

Рис. 14. Графики изменения тока и тягового усилия реле переменного тока

Реле постоянного тока получили большее распространение, чем реле переменного тока. Главное их преимущество — меньшие габариты и большая чувствительность. При наличии сети переменного тока можно включать реле постоянного тока через выпрямительные устройства.

Реле переменного тока имеет еще одну важную особенность по сравнению с реле постоянного тока. При питании обмотки реле от сети переменного тока сопротивление этой обмотки имеет как активную составляющую R, так и индуктивную составляющую , определяемую индуктивностью обмоткиL. При подключении обмотки реле к постоянному напряжению ток не зависит от перемещения якоря, он остается постоянным и определяется сопротивлением R.

Рассмотрим три основных способа устранения вибрации реле переменного тока: применение короткозамкнутого витка; применение многофазной обмотки; применение массивного якоря.

Наиболее часто для исключения вибрации реле переменного тока используется короткозамкнутый виток, охватывающий часть сердечника (рис. 15, а, б). В сердечнике делается щель на небольшую глубину (обычно пропиливается). В эту щель вставляется одна сторона короткозамкнутого витка, обычно представляющего собой медную штампованную прямоугольную рамку. Принцип действия короткозамкнутого витка заключается в следующем. Переменный магнитный поток Ф, созданный током в обмотке реле, проходит по сердечнику и разветвляется на две части: один поток Ф1 проходит по стали, не пронизывая плоскость витка; другой поток Ф2 проходит по стали, наводя в витке переменную ЭДС, как во вторичной обмотке трансформатора. Так как виток замкнут накоротко, то в нем под действием наведенной ЭДС пойдет ток, создавая магнитный поток Фк з, препятствующий изменению магнитного потока Ф2 (правило Ленца). Это приводит к отставанию по фазе потока Ф2 от потока Ф1. Следовательно, в рабочем зазоре реле переменного тока будут действовать два сдвинутых во времени потока (рис. 15, б). Поэтому электромагнитная тяговая сила ни в один из моментов времени не будет равна нулю; когда магнитный поток равен нулю, то сила создается еще не равным нулю потоком Ф2, а когда этот поток Ф2 станет равен нулю, уже потоквозрастет и обеспечит создание тяговой силы. С помощью короткозамкнутого витка удается обеспечить отставание магнитного потока Ф2 от Ф1 на 60—70°. Но за счет встречно направленного потока Фкз величина Ф2 получается меньше, чем Ф1

Рис. 15. Короткозамкнутый виток в реле переменного тока

Обеспечить равенство потоков Ф2 и Ф1 и сдвиг их по фазе на 90° можно с помощью двухфазного реле. Такое реле имеет два сердечника с раздельными обмотками и общий якорь. В цепь одной из обмоток включается конденсатор, обеспечивающий сдвиг по фазе токов в обмотках на 90°. При таком сдвиге фаз и равенстве магнитных потоков результирующая сила притяжения якоря будет иметь постоянное значение. При наличии трехфазной сети электромагнитный механизм реле может быть выполнен в виде Ш-образного сердечника с тремя обмотками (на каждом стержне — одна обмотка) и плоского якоря. Обмотки обычно соединяются звездой и включаются в трехфазную сеть. Три магнитных потока в трех рабочих зазорах будут создавать постоянное тяговое усилие на якоре. Однако точка приложения этого усилия будет перемещаться по якорю; ведь сначала якорь сильнее притягивается к крайнему стержню, потом к среднему, к другому крайнему и т. д.

Утяжеленный якорь благодаря большой инерции не может вибрировать с удвоенной частотой (2ω), так как он не успевает отходить от сердечника в те моменты времени, когда ток в обмотке реле проходит через нуль и тяговое усилие равно нулю. Однако применение утяжеленного якоря приводит к увеличению размеров реле и уменьшению чувствительности. Этот способ применяется редко, например когда исполнительный механизм, связанный с якорем реле, имеет большую инерцию.

При подключении обмотки реле к переменному напряжению ток будет изменяться в зависимости от перемещения якоря. Действительно, электромагнитный механизм реле похож на электромагнитный датчик перемещения: его индуктивность L возрастает с уменьшением воздушного зазора. Следовательно, при притягивании якоря к сердечнику индуктивное сопротивление будет возрастать, а ток — уменьшаться. Поэтому тяговое усилие реле переменного тока в отличие от реле постоянного тока мало увеличивается или вообще не увеличивается по мере уменьшения воздушного зазора.

Электромагнитные реле переменного тока

Реле переменного тока состоит из таких же деталей, что и нейтральное реле постоянного тока. Отличие заключается в том, что сердечник, ярмо и якорь этого реле изготавливаются из листовой электротехнической стали с целью уменьшения потерь на гистерезис и вихревые токи.

Так как сила притяжения якоря F пропорциональна магнитному потоку Ф управляющего тока и не зависит от направления магнитного потока, то при переменном намагничивающем токе сила притяжения будет меняться от нуля до максимума с двойной частотой (рис.2.4.б). В моменты времени, когда сила управляющего тока близка к нуле­вому значению, пружина стремится оттянуть якорь назад, поэтому происходит вибрация якоря и даже искрение контактов, повторя­ющееся с частотой изменения силы притяжения F1.

Рис. 2.4

Для устранения данного явления реле изготовляются либо с двумя обмотками, либо с дополнительной короткозамкнутой обмот­кой.

На практике чаще применяется реле пере­менного тока с короткозамкнутой обмот­кой. Полюс такого реле раздвоен. На одну из половин на­саживается короткозамкнутый медный виток (рис. 2.4.а).

Магнитный поток Ф у конца сердечника разветвляется; часть потока Ф1 проходит через свободную половину сердечника, а другая часть потока Ф2 проходит по части сердечника с короткозамкнутой медной обмоткой. За счет явления самоиндукции в короткозамкнутой обмотке поток Ф2 сдвинут по фазе относительно потока Ф1 (см. рис. 4.2.б). Поэтому в любой момент времени суммарная сила F, действующая на якорь, не равна нулю и якорь надежно удерживается у сердечника пока к обмотке реле подведено управляющее напряжение.

Электромагнитные реле переменного тока получили меньшее распространение, чем реле постоянного тока, из-за присущих им недостатков: вибрации якоря, большой сложности и высокой стоимости при изготовлении, меньшей силы притяжения якоря,

Не электрических схемах элементы реле переменного тока обозначаются почти также, как элементы постоянного тока. Отличие состоит в дополнительном значке «~» на обозначении обмотки реле. Для примера ниже представлено обозначение реле переменного тока с одним нормально разомкнутым контактом (как на рис. 2.4.а):

1.2.5. Герконы

Герконы самые простые по конструкции контактные переключающие устройства. Они получили большое распространение из-за их миниатюрности и большого числа способов управления ими. По конструкции герконы бывают двух видов: с нормально разомкнутым контактом и с переключающим контактом.

Геркон с нормально разомкнутым контактом представляет собой ампулу, в которую впаяны две ферромагнитные пружинящие пластинки 1 и 2, образующими нормально разомкнутый контакт (см. рис. 2.5).

Если геркон поместить в продольное магнитное полеВ,то пластинки 1,2 намагничиваются и под действием электромагнитных сил притягиваются друг к другу – их контакт замыкается. При снятии внешнего магнитного поля пластинки размагничиваются и их контакт размыкается. Для обеспечения надежного контакта концы пластинок внутри ампулы покрыты тонким слоем серебра или золота. Пространство внутри баллона заполнено инертным газом, что исключает искрение контактов при их размыкании.

Устройство геркона с переключающим контактом показано на рис. 2.6.

Здесь:

1,2 - ферромагнитные пружинящие пластинки, в исходном состоянии их контакт разомкнут;

3 – латунная пластинка, в исходном состоянии контакт 1 – 3 замкнут.

В магнитном поле пластинки 1,2 намагничиваются и их контакт замыкается. Одновременно контакт 1-3 размыкается.

При снятии внешнего магнитного поля контакты геркона возвращаются в исходное состояние.

Управляющее магнитное поле геркона может создаваться разными способами:

- при поднесении к геркону постоянного магнита;

- при повороте около геркона постоянного магнита на угол, равный примерно 90°;

- током катушки, внутрь которой помещен геркон.

В автоматических метеорологических приборах герконы часто используют как конструктивные элементы датчиков. Примеры применения герконов в датчиках приведены выше.

Примеры обозначения герконов с разным способом управления:

1.2.6. Электронные реле: общие сведения, особенности построения. Электронное реле времени: схема, принцип работы, области применения.

Распространенными элементами автоматики являются разнообразные переключающие устройства. Большую часть из них составляют контактные переключающие устройства, в том числе электромагнитные реле постоянного тока. Работа реле основана на механическом перемещении контактных пластин, когда ток управляющей обмотки реле достигает определенных дискретных значений, называемых током срабатывания и током отпускания. У самых чувствительных реле ток срабатывания составляет несколько миллиампер. Для повышения чувствительности обмотку реле включают в качестве нагрузки в выходную цепь усилителя постоянного тока. Такие устройства называют электронными реле. На рис. 2.7 представлена схема электронного реле на транзисторном усилителе.

 
 

Рис.2.7

В этой схеме обмотка реле К1 шунтируется диодом VD для предотвращения тока самоиндукции в обмотке реле при запирании транзистора при быстром уменьшении управляющего сигнала Uвх.

Электронное контактное реле позволяет существенно снизить мощность управляющего сигала, но время срабатывания такого реле не может быть меньше времени срабатывания электромеханического реле. Более быстродействующими являются бесконтактные электронные устройства, например, триггеры.

Реле времени.На практике бывает необходимо увеличить время срабатывания реле на заданный промежуток времени с заданной точностью. Реле, в которых время срабатывания превышает 0,5 с, называют реле времени. Время срабатывания реле времени называют временем выдержки. Существует огромное разнообразие схем реле времени, в том числе контактных (с использованием электромагнитных реле) и бесконтактных (релейных электронных схем). На рис. 2.8 представлено так называемое конденсаторное реле времени. Его работа основана на зависимости времени выдержки реле от постоянной времени RC – цепи, включенной во входную цепь реле времени.

Рис. 2.8

В этой схеме отсчет времени выдержки начинается с момента переключения ключа S.

В этот момент на базу транзистора с конденсатора С передается отрицательное напряжение, транзистор открывается и реле переходит в рабочее положение, так как через обмотку реле К1 проходит коллекторный ток открытого транзистора, превышающего ток срабатывания реле. Со временем конденсатор постепенно разряжается через открытый переход эмиттер-база транзистора. Коллекторный ток постепенно уменьшается. Когда он уменьшится до величины тока отпускания реле, контакты реле вернутся в исходное состояние. Очевидно, что в данной схеме время выдержки реле зависит от емкости конденсатора С. Чем больше емкость конденсатора С, тем больше время выдержки реле времени.

Кроме конденсаторных реле времени существуют электронные реле, работа которых основана на подсчете числа импульсов стандартной частоты до заданного числа. Такие реле отличаются большей точность отработки заданного времени выдержки и большим диапазоном его значений.

Дата добавления: 2016-03-15; просмотров: 1287; ЗАКАЗАТЬ НАПИСАНИЕ РАБОТЫ

ПОСМОТРЕТЬ ЕЩЕ:


Смотрите также

  • Как собрать душевую кабинку
  • Оштукатуривание откосов оконных
  • Фото планировка квартир
  • Обогреватель для дома безопасный
  • Технология укладки мягкой кровли
  • Пылесос для инструмента
  • Укладка палубной доски из лиственницы
  • Мастер класс корзина из бумаги своими руками
  • Плесень в ванной на стенах
  • Каркас для дома из металла
  • Беспроводной датчик движения для сигнализации