Подключение асинхронного двигателя на 220


Трехфазный асинхронный двигатель – подключение на 220 вольт

Бытовых ситуаций много, особенно у тех, кто проживает в своем собственном частном доме. К примеру, необходимо установить в гараже точильный станок с асинхронным электродвигателем, который работает от трехфазной сети переменного тока. А на участок проведена лишь однофазная сеть на 220 В. Что делать? В принципе, это не проблема, потому что любой трехфазный электрический движок можно подключить и к однофазной сети, главное знать, как это сделать. Итак, наша задача в этой статье разобраться в позиции – асинхронный двигатель подключение на 220 вольт.

Существуют две классические схемы такого подключения, в которых присутствуют конденсаторы. То есть, сам электродвигатель становится не асинхронным, а конденсаторным. Вот эти схемы:

Конечно, это не единственные варианты, но в этой статье будем говорить именно о них, как о самых простых и часто используемых.

На схемах хорошо видно, что в них установлены конденсаторы: рабочий и пусковой, которые в свою очередь называются фазосдвигающими. А так как в данной схеме эти элементы являются основными, то самый важный момент – это правильно подобрать конденсатор по емкости, которая бы соответствовала мощности мотора.

Выбираем конденсаторы

Существует формула, по которой емкость можно рассчитать. Правда, для схемы звезда и треугольника она отличается коэффициентом. Для схемы звезда формула вот такая:

С=2800*I/U, где I – это ток, который можно замерить в питающем проводе клещами, U – это напряжение однофазной сети – 220 В.

Формула для треугольника:

С=4800*I/U.

Здесь загвоздка может быть только в определение силы тока, просто клещей может не оказаться под рукой, поэтому предлагаем упрощенный вариант формулы:

С=66*Р, где Р – это мощность электродвигателя, которая наносится на шильдик мотора или в его паспорте. По сути, получается так, что емкость рабочего конденсатора в размере 7 мкФ должно хватить на 0,1 кВт мощности двигателя. Обычно электрики берут именно это соотношение, когда перед ними ставиться вопрос, как подключить асинхронный двигатель с 380 на 220 В. И еще один момент – конденсатор контролирует силу тока, поэтому так важно правильно подобрать его емкость. И самое главное в подключении двигателя добиться того, чтобы значение тока при эксплуатации электродвигателя не поднималось выше номинальной величины.

Читайте также:  Конструкционные отличия синхронного и асинхронного двигателя

Что касается пускового конденсатора, то его обязательно устанавливают в схему, если при пуске мотора действует хотя бы минимальная нагрузка. Включается он обычно буквально на пару секунд, пока ротор не наберет свои обороты. После чего он просто отключается. Если по каким-то причинам пусковой конденсатор не отключится, то произойдет перекос фаз, и двигатель перегреется.

Внимание! Так как в процессе пуска, тем более под нагрузкой, величина тока сильно возрастает, то и емкость пускового конденсатора должна быть раза в три больше конденсатора рабочего.

Есть еще один показатель, на который необходимо обратить внимание при выборе. Это напряжение. Правило здесь одно: напряжение конденсатора должно быть больше напряжения в однофазной сети на 1,5.

Тип конденсаторов

Специалисты рекомендуют в качестве пускового и рабочего конденсаторов использовать одинаковые модели. Самый простой вариант – это бумажные конструкции в герметичном металлическом корпусе. Правда, есть у них один существенный недостаток – большие габаритные размеры. Поэтому если перед вами стоит вопрос, как подключить небольшой мощности двигатель 380 на 220 вольт, то количество таких конденсаторов будет приличным, и вся конструкция будет смотреться не очень.

Можно использовать для этих целей электролитические приборы, но их схема подключения отличается от предыдущей, потому что в нее придется установить резисторы и диоды. К тому же эти конденсаторы при пробое взрываются. Есть более современные виды – это полипропиленовые модели металлизированного типа. Себя они зарекомендовали хорошо, претензий к ним сейчас у специалистов нет.

Полезные советы

  • Обращаем ваше внимание на тот факт, что при подключении трехфазного двигателя к однофазной сети можно говорить и снижении мощности электрического агрегата. В общем, его фактический показатель не будет превышать номинальный 70-80%. При этом скорость вращения ротора не уменьшится.
  • Если используемый движок имеет схему переключения 380/220, это обязательно указывается на шильдике, то в однофазную сеть его надо подключать только треугольником.
  • В том случае, если на шильдике указаны схема подключения звездой и только трехфазное подключение на 380 вольт, то вам придется вскрыть клеммную коробку и добраться до соединения концов обмоток двигателя. Потому что внутри агрегата уже установлена схема звезда, ее-то и придется разобрать и вывести наружу шесть концов обмотки статора.

Установка реверса

Иногда возникает необходимость провести подключение так, чтобы трехфазный двигатель, подсоединенный к однофазной сети, вращался то в одну, то в другую стороны. Для этого необходимо установить в схему любой управляющий прибор. Это может быть тумблер, кнопка или ключи управление. Но здесь есть два основных требования:

  1. Обращайте внимание на силу тока, которую этот управляющий прибор может выдержать. Чтобы он был больше нагрузки, создаваемой электродвигателем.
  2. В конструкции управляющего прибора должно быть две пары контактов: нормально замкнутые и нормально разомкнутые.

Вот схема, по которой подключается этот элемент в питание электродвигателя:

Здесь видно, что реверс осуществляется подачей электроэнергии на разные полюса конденсаторов.

Заключение по теме

Схема трехфазного асинхронного двигателя с подключением к 220 вольт – дело реальное. Проблем с ним быть не должно. Здесь главное, и это было показано в статье, правильно подобрать конденсаторы (рабочие и пусковые) и правильно выбрать схему подключения. Особое внимание придется уделить правилам соединения, где в основе будет лежать сам двигатель, а, точнее, его возможности.

Как подключить асинхронный двигатель на 220 вольт

Как подключить асинхронный двигатель, рассчитанный на 220 вольт? Такой вопрос может возникнуть, если электромотор, изначально установленный и работавший в одном из устройств бытовой техники планируется использовать “не по назначению”. Например, сделать самодельный заточной станок.

Так, бывает очень часто. Асинхронные однофазные двигатели способны надолго “пережить” срок эксплуатации тех устройств, в которые они были первоначально установлены.

Что делать, когда бытовая техника по тем или иным причинам вышла из строя? Выкидывать её вместе с вполне исправным мотором или сдавать его как лом на откуп местным барыгам? Ни тот ни другой вариант нормального человека, имеющего голову и руки, растущие из нужного места, не может устроить.

Можно и нужно дать такому электромотору “вторую жизнь”, а для этого нужно в том числе знать, как подключить асинхронный двигатель на 220 вольт.

Как подключить однофазный асинхронный двигатель

Об особенностях асинхронного электродвигателя и его отличиях от коллекторного электродвигателя подробно рассказывалось в предыдущей статье, но сейчас нас интересует практическое применение этих знаний и здесь неискушенного в электромеханике потребителя могут ждать самые неожиданные “засады”.

Возможные схемы подключения однофазного асинхронного электродвигателя

На самом деле, собственно подключение такого движка в любом случае несложно. Вот возможные варианты подключения:

  • Схема с четырьмя выводами. Каждая из катушек имеет два вывода. У рабочей обмотки сопротивление меньше.
  • Схема с тремя выводами. На самом деле, обмоток, как и в предыдущем случае две, только один из проводов каждой, соединен с проводом другой, т. е. обмотки соединены последовательно.

Обязательные условия для начала вращения однофазного асинхронного двигателя

Чтобы ротор начал крутится должны быть выполнены несколько условий:

  1. Для начала движения одной пары полюсов, недостаточно. Обязательно нужна ещё, хотя бы одна, статорная обмотка.
  2. Полюса должны быть пространственно смещены относительно друг друга на 90°. Действительно, это оптимальное положение для начала движения тяжело нагруженного вала, но вместе с тем по мере увеличения оборотов такое расположение катушек негативно сказываться на характеристиках электромотора.
  3. Полюса должны быть смещены не только пространственно, но и временно т. е. каждый из периодов переменного напряжения, протекающего в одной из катушек, должен отставать, от периода переменного напряжения, единовременно протекающего в другой.

Внимательный читатель увидит в этих требованиях явное противоречие. Как же так, ведь фаза всего одна?

С технической точки зрения электромеханики, этот “недостаток” легко устраним, но некоторое противоречие в вышеизложенном словоизлиянии, всё же есть. По сути, здесь правильнее говорить о двух фазах, хотя и полученных от одного источника.

Как заставить ротор однофазного электродвигателя вращаться

Стадия строганья с места одно из слабых мест, возникающих в процессе работы однофазного асинхронного двигателя. Теоретически, равные по величине, но направленные в противоположные стороны магнитные потоки разнозаряженных полюсов должны уравновешивать друг друга, поэтому хотя обмотка и будет находиться в возбужденном состоянии, вращения не будет.

Так, должно быть, повторяюсь, теоретически, на практике неоднократно приходится сталкиваться с тем что при подаче напряжения на рабочую обмотку двигатель без всякого внешнего воздействия начинал работать.

Зачем нужен рабочий конденсатор

Если двигатель работает на холостом ходу, то в общем то, без разницы, есть какая-то емкость в цепи рабочей катушки или нет, но всё меняется, если к валу ротора приложить нагрузку. Дополнительная ёмкость, до определенного момента, позволит компенсировать принудительную задержку смещения магнитного поля ротора, тем самым увеличив КПД электродвигателя.

При изготовлении самодельной конструкции на КПД электродвигателя в большинстве случаев просто не обращают внимание т. к. максимальная фиксированная нагрузка может быть разной, работа механизма не продолжительной, а затраты на увеличенное потребление электроэнергии не обременительны.

Зачем нужен пусковой конденсатор

Пусковые конденсаторы маркируются надписью STARTING или START.

Если вы внимательно читали предыдущую главу, то знаете ответ. Для временного сдвига фаз напряжения (тока), единовременно протекающего в двух катушках электродвигателя, но почему используют именно конденсатор, а не другой фазосдвигающий элемент, катушку индуктивности.

Электрический двигатель чаще всего запускается с нагрузкой на валу, иногда значительной. Форма магнитного поля создаваемое обмотками статора в этом случае искажается, приобретает форму эллипса, что приводит к снижению пускового момента. Избежать подобного проседания электротехнических характеристик электродвигателя в этот момент, проще всего с помощью конденсатора.

Параметры конденсаторов для запуска и работы асинхронного двигателя

Для того чтобы вычислить ёмкость конденсатора по формуле, нужно знать все технические характеристики данного электродвигателя. Даже такие специфические, как коэффициент трансформации каждой статорной катушки.

Ёмкость конденсатора, включенного в цепь рабочей катушки, подбирается из расчёта 4 мкФ на каждые 100 Вт мощности. Ёмкость пускового конденсатора в 2–3 раза больше рабочего. Номинальное напряжение каждого конденсатора 350–600 В.

Информация на шильдике (информационной табличке на корпусе изделия), может быть не полной, но зато в некоторых случаях в ней есть данные о типе и параметрах рекомендуемого рабочего конденсатора.

Подключение однофазного асинхронного электродвигателя к сети

Особенность этого подключения заключается в том, что напряжение на рабочую катушку после включения двигателя в сеть должно подаваться постоянно, а на пусковую через фазосдвигающий конденсатор, только на кратковременное время (2–10 сек).

Сделать это несложного, например, с помощью двух тумблеров, один из которых имеет два фиксированных положения (рабочий), а другой без фиксации (пусковой).

На самом деле, всех этих манипуляций при запуске электродвигателя можно избежать, если использовать специально предназначенные для этих целей коммутирующие устройства.

Пусковая кнопка ПНВС

В этом механизме (ПНВС-10) не было бы ничего особенного, если бы не одна фишка. При нажатии кнопки “Пуск” замыкаются все три пары контактов. При отпускании кнопки, крайние пары остаются в замкнутом положении, а средняя пара возвращается в исходное, разомкнутое положение. После нажатия “Стоп” все контакты размыкаются.

На картинке ясно видно, что средняя пара контактов разомкнута, а две крайние пары замкнуты.

Остается подключить пусковую обмотку к крайним клеммам, а пусковую к средней и одной из крайних (общей) клеммам кнопки.

Вот так просто и если хотите, элегантно реализован весь порядок необходимых подключений.

Небольшая цена (120–190 руб), ещё одно из достоинств этого устройства. Некоторых пользователей смущают относительно большие габариты, но поскольку электромотор чаще всего используется в составе какого-то агрегата (станка), что само по себе подразумевает стационарное применение, то размеры блока кнопок, в этом случае, не помеха.

Подключение к сети однофазного двигателя с помощью магнитного пускателя

Поскольку питание, подаваемое на пусковую катушку через несколько секунд после нажатия кнопки “Пуск” нужно отключить, то понадобится два пускателя, а ещё блок, состоящий из двух кнопок, каждая из которых должна иметь две группы контактов с нормально-замкнутыми и нормально-разомкнутыми парами контактов.

Красным цветом обозначены силовые провода. Синим, провода управления.

Получается дороговато, каждый из пускателей с катушкой на 220 В, стоит 700–3000 руб, а ещё такой способ подключения никак не назовешь компактным и простым.

Все эти недостатки компенсируются возможностью коммутировать довольно большую нагрузку.

О подключении трёхфазных электродвигателей к однофазной сети

На мой взгляд, эта тема в наши дни потеряла свою актуальность. Раньше (период СССР), купить однофазный двигатель было проблематично или просто невозможно, а трёхфазники приобретались “по случаю”. Естественно, сразу же возникал вопрос об адаптации такого движка к однофазной сети. Сейчас таких случаев уже почти нет, а покупать дорогой трёхфазный электродвигатель с тем, чтобы подключать его к сети на 220 В. никто в здравом уме не будет.

Возможно, я ошибаюсь и у читателя есть своё мнение на этот счёт. Выскажите его в комментариях.

Подключение асинхронного двигателя на 220

Для работы любого асинхронного двигателя необходимо наличие вращающегося электромагнитного поля. При включении в трехфазную электрическую сеть это условие легко соблюдается: три фазы, сдвинутые относительно друг друга на 120°, создают поле, напряженность которого в пределах пространства статора изменяется именно циклически.

Однако, бытовые сети в подавляющем большинстве однофазные — с напряжением 220 вольт. Создать вращающееся электромагнитное поле в такой сети уже не так просто, поэтому однофазные асинхронные двигатели не так распространены в использовании как их трехфазные аналоги .

Тем не менее, однофазные «асинхронники» довольно успешно применяются в бытовых вентиляторных, насосных и прочих установках. Так как мощность бытовой однофазной сети обычно совсем не велика, а энергетические показатели и характеристики однофазных двигателей в целом существенно отстают от характеристик двигателей трехфазных, то однофазный асинхронный двигатель редко имеет мощность, превышающую один киловатт.

Ротор однофазных асинхронных двигателей выполняется короткозамкнутым, так как в силу маломощности этих машин отсутствует необходимость регулирования по роторной цепи.

Цепь статора представляет собой две обмотки, включаемые в сеть параллельно. Одна из них является рабочей и она обеспечивает работу двигателя в сети 220 вольт, а вторую можно считать вспомогательной, или пусковой.

В цепь второй обмотки включается элемент, обеспечивающий разность токов в обмотках. необходимую для создания вращающегося поля. В подавляющем большинстве случаев этот элемент является конденсатором, но существуют однофазные двигатели, имеющие в своем составе для этих целей индуктивность или резистор.

Конденсаторные электродвигатели конструктивно делятся на следующие двигатели:

1) с пусковым; 2) с пусковым и рабочим; 3) с рабочим конденсатором.

В первом и наиболее распространенном случае дополнительная обмотка и конденсатор включаются в сеть только на время пуска, а по его окончании выводятся из работы.

Реализуется такая схема при помощи реле или просто кнопкой, зажимаемой оператором на время пуска. В случае с рабочим конденсатором он вместе со своей обмоткой постоянно включен в цепь.

Электрические машины с пусковым конденсатором имеют хороший пусковой момент при небольших бросках тока во время пуска. Однако, во время работы в номинальном режиме показатели таких двигателей резко снижаются из-за того, что поле одной рабочей обмотки является не круговым, а эллиптическим.

Двигатели с рабочим конденсатором, напротив, обеспечивают хорошие рабочие номинальные параметры при посредственных пусковых. Двигатели, имеющие в конструкции пусковой и рабочий конденсатор, являются компромиссом между двумя предыдущими решениями и имеют средние показатели, как во время пуска, так и во время работы.

В целом, схемам с пусковым конденсатором отдается предпочтение при тяжелом пуске, а схемам с рабочим конденсатором – если нет потребности в хорошем пусковом моменте.

Стоит отметить, что при подключении однофазного двигателя, у пользователя почти всегда есть выбор, какой из схем отдать предпочтение, поскольку все выводы двигателя: от конденсатора, от вспомогательной обмотки и от главной обмотки собираются в клеммной коробке (барно).

При отсутствии конденсатора, или при необходимости переделать схему можно подобрать рабочий конденсатор из расчета 0,7-0,8 мкФ на киловатт мощности, а пусковой – в 2,5 раза больше.

Определить рабочую и пусковую обмотку статора в коробке можно по сечению проводов: у пусковой оно будет меньше. Зачастую, пусковая и рабочая обмотка соединяются прямо в корпусе двигателя и выводятся наружу одним общим выводом.

Возможность осуществления реверсирования при управлении такой электрической машины не представляется возможной, поскольку нельзя поменять местами концы пусковой обмотки.

А определить, какой из трех силовых выводов является общим, какой пусковым и какой рабочим, можно, только, прозвонив их относительно друг друга. Наибольшое сопротивление будет между пусковым и рабочим выводом, а сопротивление между общим и пусковым выводом будет больше сопротивления между рабочим и общим выводом.

Асинхронные двигателя рассчитаны на подключение к трехфазной сети 380В и 220В. Ниже в качестве примера есть две бирки, на которых изображено:

— тип двигателя — род тока — переменный (трёх фазный) — частота — (50Гц) — мощность — (0,25kW) — обороты в минуту — (1370 об/мин) — возможность соединения обмоток – треугольник / звезда — номинальное напряжение двигателя – 220В/380В

— номинальный ток двигателя — 2,0/1,16А

Заостряю внимание! Указанная мощность на бирке электродвигателя, это не электрическая, а механическая мощность на валу. Сейчас попробую объяснить по формуле мощность трехфазного тока.

Р = 1,73 * 220 * 2,0 * 0,67 = 510 (Вт) для напряжения 220В Р = 1,73 * 380 * 1,16 * 0,67 =510,9 (Вт) для напряжения 380В

Делаем вывод: По результату решения видно, что электрическая мощность больше механической мощности. Это естественно, так как у двигателя должен быть запас мощности, для компенсации потерь на создание вращающегося магнитного поля, потери напряжения в проводах.

На этой бирке видно, что обмотки электродвигателя можно соединить, как треугольником (220В), так звездой (380в). На клемме двигателя есть шесть выводов (С1, С2, С3, С4, С5, С6).

А на этой бирке обмотки уже соединены внутри двигателя — звездой. На клемме только три вывода (С1, С2, С3).

На рисунке изображена схема соединение обмоток асинхронного двигателя звездой. (380В/220В)

На схеме обозначено красными стрелками распределение напряжения в обмотках двигателя, что на одну обмотку распределяется напряжение одной фазы 220В, а напряжение двух обмоток складывается из междуфазного (линейного) напряжения 380В.

Из этого следует рекомендация, как приспособить трехфазный двигатель в однофазную сеть 220В. Необходимо посмотреть на бирке двигателя, на какое напряжение рассчитаны его обмотки, есть возможность соединения обмоток звездой и треугольником.

Если есть возможность изменить схему соединения обмоток на клемме, изменяем её, соединение обмоток треугольником – 220В в этом случи двигатель, потеряет меньше мощности, так как распределение напряжение для каждой обмотки будет одинаково 220В.

Соединение обмоток на клемме звездой. Начало обмоток — (С1; С2; С3;) подключатся к сети, а концы – (С6; С4; С5;) обмоток соединяются в месте перемычкой.

Соединение обмоток на клемме треугольником. Устанавливаются перемычки между выводами (С1 – С6); (С2 – С4); (С3 – С5), а к сети подключаются вывода — (С1; С2; С3;).

Схема подключения асинхронного двигателя в однофазную сеть через конденсаторы. Соединение обмоток треугольником с подключением рабочих и пусковых конденсаторов.

Есть двигатель, у которого обмотки рассчитаны для подключения к сети 220В/127В. При схеме соединение обмоток звездой его подключают к трехфазной сети 220В, а при схеме соединение обмоток треугольником подключают к трехфазной сети 127В.

Таблица 1. Технические характеристики некоторых конденсаторов.

Самый распространенный способ, как запустить двигатель: это фазосдвигающий конденсатор. В этом случае потеряется мощность двигателя.

Полезная мощность электродвигателя составит — 50. 60% от его мощности.

Приступим: Какие конденсаторы применяем? Выбираем масляные конденсаторы,

по напряжению, не менее 300 — 400В.

Что бы набрать ёмкость рабочих конденсаторов необходимо: выполнить параллельное соединение конденсаторов.

Как подсчитать нужную ёмкость рабочих конденсаторов, не прибегая к сложным математическим вычислениям? На каждые 100 Вт берём 7мкФ (1кВт = 70мкФ).

На сайте появилась возможность подсчитать необходимую ёмкость конденсаторов в рублике “Онлайн расчеты” вот ссылка для расчета: Определить емкость рабочих конденсаторов, для электродвигателя

Параллельное соединение конденсатора

Теперь нужно выбрать ёмкость пусковых конденсаторов: — пусковая ёмкость конденсаторов должна быть больше в три раза рабочих конденсаторов.

Пусковые конденсаторы необходимы только при запуске двигателя. Что будет если пусковые конденсаторы не отключать из схемы при работе двигателя? Это не допустимо. Когда двигатель наберёт номинальные обороты, пусковые конденсаторы будут наводить большой перекос по току в обмотках двигателя,

тем самым вызовет перегрев обмоток двигателя.

Есть электронная книга «Шпаргалка мастеру «, в которой объясняется простым доступным языком, подключение двигателей, магнитных пускателей и т.п.

Как подключить трёхфазный электродвигатель если есть только 220 вольт?

Самыми распространенными приводами различных электрических машин в мире являются асинхронные двигатели. Они были изобретены еще в XIX веке и очень быстро, в силу простоты своей конструкции, надежности и долговечности, используются широко и в промышленности, и в быту.

Однако далеко не все потребители электрической энергии обеспечены трехфазным электроснабжением, что затрудняет применение надежных помощников человека – трехфазных электродвигателей. Но выход, достаточно просто реализуемый на практике, все же есть. Нужно только сделать подключение двигателя, используя специальную схему.

Но вначале стоит немного узнать о принципах работы трехфазных электродвигателей и о их подключении.

Каким образом асинхронный двигатель будет работать при подключении в двухфазную сеть

На статоре асинхронного двигателя помещаются три обмотки, которые обозначаются буквами C1, C2— C6. Первой обмотке принадлежат выводы C1 и C4, второй С2 и C5, а третьей C3 и C6, причем C1— С6 – это начала обмоток, а C4— C6 – их конец. В современных двигателях принята несколько иная система маркировки, обозначающая обмотки буквами U, V, W, а их начало и конец обозначают цифрами 1 и 2. Например, началу первой и обмотки C1 соответствует U1, концу третей C6 соответствует W2 и так далее.

Все выводы обмоток смонтированы в специальной клеммной коробке, которая есть у любого асинхронного двигателя. На табличке, которая должна быть на каждом двигателе обозначены его мощность, рабочее напряжение (380/220 В или 220/127 В), а также возможность Подключения по двум схемам: «звездой» или «треугольником».

Стоит учитывать, что мощность асинхронной машины при подключении в однофазную сеть всегда будет на 50—75% меньше, чем при трехфазном подключении.

Схема подключения к однофазной сети 220 вольт

Если просто подключить трехфазный двигатель к сети 220 вольт просто соединив обмотки с питающей сетью, то ротор не будет двигаться по той простой причине, что отсутствует вращающееся магнитное поле. Для того, чтобы его создать необходимо сдвинуть фазы на обмотках при помощи специальной схемы.

Из курса электротехники известно, что конденсатор, включенный в электрическую цепь переменного тока, будет сдвигать фазу напряжения. Это происходит из-за того, что во время его заряда происходит постепенное возрастание напряжения, время которого определяется емкостью конденсатора и величиной протекающего тока.

Получается, что разность потенциалов на выводах конденсатора будет всегда опаздывать по отношению к питающей сети. Этим эффектом и пользуются для подключения трехфазных двигателей в однофазную сеть.

На рисунке представлена схема подключения однофазного двигателя при разных способах. Очевидно, что напряжение между точками A и C. также B и C будет расти с запаздыванием, что создаст эффект вращающегося магнитного поля. Номинал конденсатора в соединениях типа «треугольник рассчитывается по формуле: C=4800*I/U, где I – это рабочий ток, а U– напряжение. Емкость в этой формуле вычисляется в микрофарадах.

В соединениях по способу «звезда», которое наименее предпочтительно нужно использовать в однофазных сетях из-за меньшей отдаваемой мощности, применяют другую формулу C=2800*I/U. Очевидно, что конденсаторы требуют меньших номиналов, что объясняется меньшими пусковыми и рабочими токами.

Подключение высокомощных устройств в однофазную сеть

Представленная выше схема подходит только для тех трехфазных электродвигателей, чья мощность не превышает 1,5 кВт. При большей мощности потребуется применение другой схемы, которая помимо рабочих характеристик гарантированно обеспечит пуск двигателя и его выход в рабочий режим. Такая схема представлена на следующем рисунке, где дополнительно присутствует возможность реверса двигателя.

Конденсатор Сp обеспечивает работу двигателя в штатном режиме, а Cп – нужен при пуске и разгоне двигателя, который делается в течение нескольких секунд. Резистор R разряжает конденсатор после запуска и размыкания кнопочного выключателя Кн. а переключатель SA служит для реверса.

Емкость пускового конденсатора обычно применяется в два раза большей, чем емкость рабочего конденсатора. Для того чтобы набрать нужную емкость, используют собранные батареи из конденсаторов. Известно, что параллельное соединение конденсаторов суммирует их емкость, а последовательное – обратно пропорционально.

При выборе номиналов конденсаторов руководствуются тем, что их рабочее напряжение должно быть больше напряжения в сети минимум на одну ступень, а это обеспечит их надежную работу при пуске.

Современная элементная база позволяет использовать конденсаторы высокой емкости при небольших габаритах, что значительно упрощает подключение трехфазных двигателей в однофазную сеть 220 вольт.

  • Асинхронные машины могут подключаться и в однофазные сети 220 вольт при помощи фазосдвигающих конденсаторов, номинал которых рассчитывается, исходя их рабочего напряжения и потребляемого тока.
  • Двигатели, имеющие мощность свыше 1,5 кВт, требуют подключения и пускового конденсатора.
  • Подключение способом «треугольник» является основным в однофазных сетях.

    Чаще всего к нашим домам, участкам, гаражам подведена однофазная сеть 220 В. Потому оборудование и все самоделки делают так, чтобы они работали от этого источника питания. В данной статье рассмотрим, как правлильно сделать подключение однофазного двигателя.

    Асинхронный или коллекторный: как отличить

    Вообще, отличить тип двигателя можно по пластине — шильдику — на которой написаны его данные и тип. Но это только в том случае, если его не ремонтировали. Ведь под кожухом может быть что угодно. Так что если вы не уверены, лучше определить тип самостоятельно.

    Так выглядит новый однофазный конденсаторный двигатель

    Как устроены коллекторные движки

    Отличить асинхронный и коллекторный двигатели можно по строению. У коллекторных обязательно есть щетки. Они расположены возле коллектора. Еще обязательный атрибут движка этого типа — наличие медного барабана, разделенного на секции.

    Такие двигатели выпускаются только однофазные, они часто устанавливаются в бытовой технике, так как позволяют получить большое число оборотов на старте и после разгона. Также они удобны тем, что легко позволяют менять направление вращения — необходимо только поменять полярность. Несложно также организовать изменение скорости вращения — изменением амплитуды питающего напряжения или угла его отсечки. Потому и используются подобные двигатели в большей части бытовой и строительной техники.

    Строение коллекторного двигателя

    Недостатки колелкторых двигателей — высокая шумность работы на больших оборотах. Вспомните дрель, болгарку, пылесос, стиральную машину и т.д. Шум при их работе стоит приличный. На малых оборотах коллекторные двигатели не так шумят (стиральная машина), но не все инструменты работают в таком режиме.

    Второй неприятный момент — наличие щеток и постоянного трения приводит к необходимости регулярного технического обслуживания. Если токосъемник не чистить, загрязнение графитом (от стирающихся щеток) может привести к тому, что соседние секции в барабане соединятся, мотор попросту перестанет работать.

    Асинхронные

    Асинхронный двигатель имеет стартер и ротор, может быть одно и трех фазным. В данной статье рассматриваем подключение однофазных двигателей, потому речь пойдет только о них.

    Асинхронные двигатели отличаются невысоким уровнем шумов при работе, потому устанавливаются в технике, шум работы которой критичен. Это кондиционеры, сплит-системы, холодильники.

    Строение асинхронного двигателя

    Есть два типа однофазных асинхронных двигателей — бифилярные (с пусковой обмоткой) и конденсаторные. Вся разница состоит в том, что в бифилярных однофазных двигателях пусковая обмотка работает только до разгона мотора. После она выключается специальным устройством — центробежным выключателем или пускозащитным реле (в холодильниках). Это необходимо, так как после разгона она только снижает КПД.

    В конденсаторных однофазных двигателях конденсаторная обмотка работает все время. Две обмотки — основная и вспомогательная — смещены относительно друг друга на 90°. Благодаря этому можно менять менять направление вращения. Конденсатор на таких двигателях обычно крепится к корпусу и по этому признаку его несложно опознать.

    Более точно определить бифолярный или конденсаторный двигатель перед вами можно при помощи измерений обмоток. Если сопротивление вспомогательной обмотки меньше в два раза (разница может быть еще более значительная), скорее всего, это бифолярный двигатель и эта вспомогательная обмотка пусковая, а значит, в схеме должен присутствовать выключатель или пусковое реле. В конденсаторных двигателях обе обмотки постоянно находятся в работе и подключение однофазного двигателя возможно через обычную кнопку, тумблер, автомат.

    Схемы подключения однофазных асинхронных двигателей

    С пусковой обмоткой

    Для подключения двигателя с пусковой обмоткой потребуется кнопка, у которой один из контактов после включения размыкается. Эти размыкающиеся контакты надо будет подключить к пусковой обмотке. В магазинах есть такая кнопка — это ПНВС. У нее средний контакт замыкается на время удержания, а два крайних остаются в замкнутом состоянии.

    Внешний вид кнопки ПНВС и состояние контактов после того как кнопка «пуск» отпущена»

    Сначала при помощи измерений определяем какая обмотка рабочая, какая — пусковая. Обычно вывод от мотора имеет три или четыре провода.

    Рассмотрим вариант с тремя проводами. В этом случае две обмотки уже объединены, то есть один из проводов — общий. Берем тестер, измеряем сопротивление между всеми тремя парами. Рабочая имеет самое меньшее сопротивление, среднее значение — пусковая обмотка, а наибольшее — это общий выход (меряется сопротивление двух последовательно включенных обмоток).

    Если выводов четыре, они звонятся попарно. Находите две пары. Та, в которой сопротивление меньше — рабочая, в которой больше — пусковая. После этого соединяем один провод от пусковой и рабочей обмотки, выводим общий провод. Итого остается три провода (как и в первом варианте):

    • один с рабочей обмотки — рабочий;
    • с пусковой обмотки;
    • общий.

    С этими тремя проводами и работаем дальше — исползуем для подключения однофазного двигателя.

    Подключение однофазного двигателя с пусковой обмоткой через кнопку ПНВС
  • подключение однофазного двигателя

    Все три провода подключаем к кнопке. В ней тоже имеется три контакта. Обязательно пусковой провод «сажаем на средний контакт (который замыкается только на время пуска), остальные два — на крайние (произвольно). К крайним входным контактам ПНВС подключаем силовой кабель (от 220 В), средний контакт соединяем перемычкой с рабочим (обратите внимание! не с общим ). Вот и вся схема включения однофазного двигателя с пусковой обмоткой (бифолярного) через кнопку.

    Конденсаторный

    При подключении однофазного конденсаторного двигателя есть варианты: есть три схемы подключения и все с конденсаторами. Без них мотор гудит, но не запускается (если подключить его по схеме, описанной выше).

    Схемы подключения однофазного конденсаторного двигателя

    Первая схема — с конденсатором в цепи питания пусковой обмотки — хорошо запускаются, но при работе мощность выдают далеко не номинальную, а намного ниже. Схема включения с конденсатором в цепи подключения рабочей обмотки дает обратный эффект: не очень хорошие показатели при пуске, но хорошие рабочие характеристики. Соответственно, первую схему используют в устройствах с тяжелым пуском (бетономешалки. например), а с рабочим конденсором — если нужны хорошие рабочие характеристики.

    Схема с двумя конденсаторами

    Есть еще третий вариант подключение однофазного двигателя (асинхронного) — установить оба конденсатора. Получается нечто среднее между описанными выше вариантами. Эта схема и реализуется чаще всего. Она на рисунке выше в середине или на фото ниже более детально. При организации данной схемы тоже нужна кнопка типа ПНВС, которая будет подключать конденсатор только не время старта, пока мотор «разгонится». Потом подключенными останутся две обмотки, причем вспомогательная через конденсатор.

    Подключение однофазного двигателя: схема с двумя конденсаторами — рабочим и пусковым

    При реализации других схем — с одним конденсатором — понадобится обычная кнопка, автомат или тумблер. Там все соединяется просто.

    Подбор конденсаторов

    Есть довольно сложная формула, по которой можно высчитать требуемую емкость точно, но вполне можно обойтись рекомендациями, которые выведены на основании многих опытов:

    • рабочий конденсатор берут из расчета 0,7-0,8 мкФ на 1 кВт мощности двигателя;
    • пусковой — в 2-3 раза больше.

    Рабочее напряжение этих конденсаторов должно быть в 1,5 раза выше, чем напряжение сети, то есть, для сети 220 В берем емкости с рабочим напряжением 330 В и выше. А чтобы пуск проходил проще, в пусковую цепь ищите конденсатор специальный конденсатор. У них в маркировке присутствует слова Start или Starting, но можно взять и обычные.

    Изменение направления движения мотора

    Если после подключения мотор работает, но вал крутится не в том направлении, которое вам надо, можно поменять это направление. Это делают поменяв обмотки вспомогательной обмотки. Когда собирали схему, один из проводов подали на кнопку, второй соединили с проводом от рабочей обмотки и вывели общий. Вот тут и надо перекинуть проводники.

    Как все может выглядеть на практике

    Как подключить асинхронный двигатель

    Подробности Категория: Электрика Опубликовано 16.07.2014 13:21 Автор: Admin Просмотров: 16294

    Как подключить трех фазный двигатель в сеть переменного тока напряжением в 220 В — спросите вы. Ведь на самом двигателе 3 фазы а сеть имеет 2 провода. Давай попробуем с этим разобраться.

    Внешний вид асинхронного двигателя

    Асинхронными двигателями они называются потому что у них отличаются частоты вращения магнитного поля статора и ротора. Получается что ротор пытается догнать или сравнять эти частоты. Таким образом и происходит вращение.

    Схема соединения обмоток статора асинхронного двигателя

    Обмотки статора, которых там 3 штуки имеют 2 способа подключения:

    • соединение в звезду;
    • соединение в треугольник.

    На крышке двигателя имеются выводы которые обозначаються как C1-C6. C1-C3 это концы обмоток, а C4-C6 это их начала. Как осущствляеться подсоединение обмоток в ту или иную конйигурация показано на рисунках ниже.

    Как работает асинхронный двигатель

    Принцип действия таких двигателей основан на всеми известным законом электромагнитной индукции. Статор двигателя имеет 3 обмотки на них поочередно подается напряжение. В обмотках возникает электрический ток который также поочередно появляется в этих обмотках.

    Электрический ток как известно создает «вокруг» себя переменное магнитное поле. А по закону электромагнитной индукции переменное магнитное поле наводит в металле электрический ток. В результате в обмотке ротора наводится электрический ток. Данный ток создает свое магнитное поле которое взаимодействует с магнитным полем статора. Получается своего рода аналог двух магнитов которые взаимодействуют с собой. Как отталкиваются и притягиваются магниты, объяснять думаю не стоит.

    В роторе не подводиться электрический ток — это стоит понимать. Обмотки ротора замыкаются между собой при помощи блока переменных сопротивлений. Переменное сопротивление используется в этом случае для регулировки частоты вращения двигателя. Изменяя при помощи него ток ротора меняется сила взаимодействия ротора и статора.

    Схема подключения асинхронного двигателя в сеть 220В

    Для того чтобы подключить асинхронный двигатель нам нужно два вывода обмотки соеденить через конденсатор между собой и сделать вывод. При подсоединении нашего асинхронника к сети 220В по схеме представленной выше, выдаваимая им мощность будет составлять 0.7 от номинальной. Это происходит потому что мы присоединяем 3-х вахный двигатель в одно вазную сеть. Для расчета емкости можно использовать приближенную формулу:

    С — емкость в мкФ

    P — мощность двигателя в Вт

    Рабочее напряжение конденсатора должно быть больше напряжения в сети. На схеме также представлен пусковой конденсатор, номинал его емкости долже быть в 3-4 раза больше рабочей емкости. Пусковой конденсатор необходим для компенсации значительных пусковых токов в момент запуска двигателя, т. к. возникают значительные напряжения самоиндукции в момент пуска.

    Довольно часто получаеться так что под рукой не оказывается нужной емкости. Для выхода из этой ситуации нужно использовать параллельное соединение конденсаторов.

    Подключение асинхронного двигателя на 220 вольт без конденсатора

    В статье вы узнаете о том, каким образом можно двигатель на 380 подключить на 220 В. В бытовой сети напряжение однофазное 220 В. А большая часть асинхронных моторов рассчитана на 380 В и три фазы. А при изготовлении самодельных сверлильных станков, бетономешалок, наждаков и прочих возникает необходимость использовать мощный привод. Мотор от болгарки, например, не получится использовать – у него много оборотов, а мощность маленькая, приходится применять механические редукторы, которые усложняют конструкцию.

    Особенности конструкции асинхронных трехфазных моторов

    Асинхронные машины переменного тока – это просто находка для любого хозяина. Вот только подключить к бытовой сети их оказывается проблематично. Но все равно можно найти подходящий вариант, при использовании которого потери мощности окажутся минимальными.

    Перед тем, как подключить двигатель 380 на 220, нужно разобраться с его конструкцией. Он состоит из таких элементов:

    1. Ротор, изготовленный по типу «беличья клетка».
    2. Статор с тремя одинаковыми обмотками.
    3. Клеммная коробка.

    Обязательно на двигателе должен быть металлический шильдик – на нем прописаны все параметры, даже год выпуска. В клеммную коробку выходят провода из статора. При помощи трех перемычек все провода коммутируются между собой. А теперь давайте рассмотрим, какие схемы подключения мотора существуют.

    Подключение по схеме «звезда»

    У каждой обмотки есть начало и конец. Перед тем, как подключить двигатель 380 на 220, нужно выяснить, где концы обмоток. Для соединения по схеме «звезда» достаточно установить перемычки таким образом, чтобы все концы были замкнуты. Три фазы нужно подключать к началам обмоток. При запуске двигателя от трехфазной сети желательно использовать именно эту схему, так как при работе не индуцируются высокие токи.

    Но добиться высокой мощности вряд ли удастся, поэтому применяют на практике гибридные схемы. Запускают мотор с включенными обмотками по схеме «звезда», а при выходе на устоявшийся режим происходит переключение на «треугольник».

    Схема подключения обмоток «треугольник»

    Минус использования такой схемы в трехфазной сети – в обмотках и проводах индуцируются большие токи. Это приводит к повреждению электрооборудования. Зато при работе в бытовой сети 220 В таких проблем не наблюдается. И если вы думаете, как подключить асинхронный двигатель 380 на 220 В, то ответ очевиден – только при помощи использования схемы «треугольник». Для того чтобы произвести подключение по такой схеме, нужно начало каждой обмотки соединить с концом предыдущей. К вершинам полученного треугольника нужно подключить питание.

    Подключение двигателя с помощью частотного преобразователя

    Этот способ одновременно является самым простым, прогрессивным и дорогим. Хотя, если вам нужна функциональность от электропривода, никаких денег не пожалеете. Стоимость самого простого преобразователя частоты составляет около 6000 рублей. Но с его помощью не составит труда двигатель на 380 подключить на 220 В. Но нужно правильно выбрать модель. Во-первых, нужно обращать внимание на то, к какой сети разрешается производить подключение прибора. Во-вторых, обратите внимание на то, сколько выходов у него.

    Для нормальной работы в бытовых условиях вам необходимо, чтобы частотный преобразователь подключался к однофазной сети. А на выходе должно быть три фазы. Рекомендуется внимательно изучить инструкцию по эксплуатации, чтобы не ошибиться с подключением, в противном случае могут погореть мощные транзисторы, которые установлены в устройстве.

    Использование конденсаторов

    При использовании мотора мощностью до 1500 Вт можно устанавливать только один конденсатор – рабочий. Чтобы вычислить его мощность, воспользуйтесь формулой:

    Сраб=(2780*I)/U=66*P.

    I – рабочий ток, U – напряжение, Р – мощность двигателя.

    Чтобы упростить расчет, можно поступить иначе – на каждые 100 Вт мощности необходимо 7 мкФ емкости. Следовательно, для двигателя 750 Вт нужно 52-55 мкФ (нужно поэкспериментировать немного, чтобы добиться нужного смещения фазы).

    В том случае, если нет в наличии конденсатора нужной емкости, нужно соединить параллельно те, которые имеются, при этом используется такая формула:

    Собщ=C1+C2+C3+…+Cn.

    Пусковой конденсатор необходим при использовании двигателей, мощность которых свыше 1,5 кВт. Пусковой конденсатор работает только в первые секунды включения, чтобы дать «толчок» ротору. Он включается через кнопку параллельно рабочему. Другими словами, с его помощью сильнее сдвигается фаза. Только таким образом можно подключить двигатель 380 на 220 через конденсаторы.

    Суть использования рабочего конденсатора – это получение третьей фазы. В качестве первых двух используются ноль и фаза, которая уже есть в сети. Проблем с подключением двигателя возникнуть не должно, самое главное – прячьте конденсаторы подальше, желательно в герметичный крепкий корпус. Если элемент выйдет из строя, он может взорваться и нанести вред окружающим. Напряжение конденсаторов должно быть не менее 400 В.

    Подключение без конденсаторов

    Но ведь можно и без конденсаторов подключить двигатель 380 на 220, для этого даже не придется покупать частотный преобразователь. Достаточно порыться в гараже и отыскать несколько главных компонентов:

    1. Два транзистора типа КТ315Г. Стоимость на радиорынке около 50 коп. за штуку, иногда даже меньше.
    2. Два тиристора типа КУ202Н.
    3. Полупроводниковые диоды Д231 и КД105Б.

    Вам также потребуется наличие конденсаторов, резисторов (постоянных и одного переменного), стабилитрона. Вся конструкция заключается в корпус, который сможет защитить от поражения электрическим током. Элементы, используемые в конструкции, должны работать при напряжении до 300 В и токе до 10 А.

    Можно осуществить как навесной монтаж, так и печатный. Во втором случае потребуется фольгированный материал и умение с ним работать. Обратите внимание на то, что отечественные тиристоры типа КУ202Н сильно нагреваются, особенно если мощность привода свыше 0,75 кВт. Поэтому элементы устанавливайте на радиаторы из алюминия, при необходимости используйте дополнительный обдув.

    Теперь вы знаете, как самостоятельно двигатель на 380 подключить на 220 (в бытовую сеть). Ничего сложного в этом нет, вариантов много, поэтому можно выбрать самый подходящий для конкретной цели. Но лучше один раз потратиться и приобрести частотный преобразователь, он увеличивает число функций привода во много раз.

    Подключение трехфазного двигателя в однофазную цепь – вопрос актуальный. Такое включение пригодится при обеспечении работы оборудования в домашних условиях. Например, циркулярной пилы, сверлильного станка или зернодробилки.

    Трехфазный двигатель в однофазной сети: частотный преобразователь

    Самым прогрессивным методом такого включения является частотный преобразователь. С его помощью получают наиболее значимые факторы в процессе эксплуатации асинхронного электродвигателя – плавность пуска и мягкость торможения. Это исключает многократное превышение номинального пускового напряжения, чем увеличивает долговечность двигателя. Кроме того, частотный преобразователь практически в два раза снижает энергопотребление. Принцип его работы основан на двукратномном преобразовании напряжения. Но стоимость инвертора определено, велика, поэтому немного отпугивает.

    Пошаговая инструкция сборки частотного преобразователя своими руками

    В целях экономии можно собрать частотный преобразователь своими руками. Представляем пошаговую инструкцию сборки инвертора в домашних условиях.

    Шаг № 1. Схема инвертора

    Начинают сборку любого электронного прибора нужно со схемы. На просторах интернета таких схем большое множество. Поэтому прежде чем начать работу, нелишним будет покопаться и выяснить рабочая выбранная модель или нет. В нашем случае это многократно тестированная и использованная схема.

    Выглядит она так. Схема рассчитана она для двигателей мощностью до 4 кВт, в процессе эксплуатации работает защита от перегрузки, нагрева и кз. Случился неприятный момент, короткое замыкание в брно двигателя, но защита отработала четко, ни двигатель, ни частотник не сгорели.

    Шаг № 2. Корпус преобразователя

    В качестве корпуса был выбран корпус от системного блока компьютера. Можно применить что-нибудь компактнее, но в этот момент именно такой блок-корпус показался приемлемым. Не нужно тратиться на приобретение или изготовление чего-то нового.

    Шаг № 3. Блок питания

    Можно изготовить нехитрый блок питания своими руками по предлагаемой схеме.

    Но в нашем случае он был приобретен в готовом исполнении на 24 В.

    Шаг № 4. Установка силовой части

    Далее, установлен набор конденсаторов, реле,

    диодный мост с обратными диодами G4PH50UD вынесен , применены полевые транзисторы IGBT.

    Шаг № 5. Устройство охлаждения

    А также смонтированы кулеры охлаждения для предотвращения нагрева радиатора.

    При тестировании схемы на двигателе 4кВт, возможно, появится нагрев. Проверка преобразователя на электрических машинах до 3,0 кВт нагрева не выявила.

    Поэтому чтобы не набивалась пыль во время работы кулеров, преобразователь планируется использовать в мастерской, установлено термореле, которое включит охлаждение только в случае перегрева радиатора до 36º С и более. Причем после падения температуры до заданных показателей, кулера опять отключатся.

    Шаг № 6. Установка шунта

    Устанавливаем шунт для 4кВт, как показано на фото.

    Шаг № 7. Монтаж основной платы преобразователя, установка и прошивка контролера

    Внизу корпуса смонтирована непосредственно плата частотника,

    она идет на микроконтроллер pic 16F628А.

    Шаг № 8. Модернизация преобразователя для регулировки частоты вращения двигателя

    Такой конструкции частотного преобразователя достаточно для плавного пуска трехфазного электродвигателя и его эксплуатации в однофазной сети.

    Если будет стоять задача регулировки оборотов двигателя, тогда его необходимо слегка усложнить, установив другой микроконтролер pic 16F648A,

    кварц 20МГц,

    два конденсатора для его обвязки 30PF,

    монитор

    и ручку для регулировки оборотов двигателя.

    Стоить отметить, что стоимость деталей для частотного преобразователя выливается примерно в сумму 2 700 гривен или 6 700 рублей, если же приобрести прибор с такими же параметрами, но заводского изготовления, цена будет равняться порядка 7 000 гривен или 17 400 рублей.

    Главное преимущество наличия частотного преобразователя в возможности подключения всех трехфазных электродвигателей до 4кВт, имеющихся в хозяйстве.

    Трехфазный двигатель в однофазной сети: конденсаторы

    Другим наиболее приемлемым способом подключения трехфазного электродвигателя в однофазную сеть являются конденсаторы. Если у вас нет средств на приобретение дорогостоящего оборудования или вопрос упирается в единоразовое подключение одного электродвигателя, то целесообразно применить конденсаторы. Это совершенно просто сделать, воспользовавшись пошаговой инструкцией из нашей статьи.

    Пошаговая инструкция применения конденсаторов для подключения асинхронного двигателя в однофазную сеть

    Шаг № 1. Расчет необходимой емкости конденсаторов

    Начинать подключение электродвигателя нужно с подбора емкости конденсаторов. Рабочая емкость конденсаторов при соединении треугольником равняется отношению произведения величины силы тока и скалярного коэффициента 4 800 к номинальному напряжению.

    Cр=4800*I/U

    В случае соединения звездой скалярный показатель равен 2 800.

    Cр=2800*I/U

    Величина силы тока определяется как отношение мощности электродвигателя к произведению скалярного коэффициента 1,73, номинального напряжения U, коэффициента мощности cosφ и кпд η.

    I=P/1,73Uηcosφ

    Данные для вычисления силы тока указаны на шильдике каждого конкретного электродвигателя.

    Емкость пускового конденсатора принимается в два — три раза большей рабочего конденсатора.

    Шаг № 2. Схема подключения

    Схема подключения трехфазных двигателей а однофазную сеть выглядит так.

    Шаг№ 3. Соединение выводов

    Сначала определяем количество выводов в брно электрической машины. Для соединения треугольником необходимо, чтобы их было шесть. Если выводов всего три. Нужно снять крышки электродвигателя и найти концы обмоток. После чего припаять к ним провода и вывести в брно. Воспользовавшись схемой соединить обмотки треугольником.

    Шаг № 4. Применение пускового конденсатора

    Если число оборотов электродвигателя превышает 1500 об/мин, то для пуска следует применить отдельный специальный конденсатор.

    Простейшее включение в сеть пускового конденсатора производится при помощи нефиксирующейся кнопки. При автоматизации процесса применяют реле тока.

    Электродвигатели мощностью до 0,5 кВт  можно включать с помощью реле из холодильника, предварительно  заменив контактную пластину и отключив защиту от нагрева. Чтобы избежать залипания ее можно сделать из графитовой щетки. Для двигателей от 0,5 до 1,1 кВт обычно перематывают реле проволокой большего диаметра, а если мощность двигателя выше указанной величины,

    то можно сделать реле тока самостоятельно.

    Шаг № 5. Соединение батареи конденсаторов необходимой емкости

    Для двигателя мощностью 1,1 кВт достаточно конденсатора емкостью 80 мкф. В нашем случае применяем 4 штуки по 20 мкф. Соединям их в одно целое, спаяв перемычки. Они будут выполнять функцию запуска и дальнейшей работы.

    Шаг № 6. Подключение питания

    Подключаем питание, см фото. Обязательно следует тщательно подготовить конца проводов. Тогда при возникновении проблем, некачественное соединение, как причину, можно будет сразу исключить.

    Шаг № 7. Подключение батареи конденсаторов

    Подключаем непосредственно конденсаторы Двигатель готов к работе.

    Еще одним способом подключения является включение трехфазного электродвигателя в однофазную сеть без конденсаторов, при помощи двустронних ключей коммутации, активирование которых выполняется в определенно конкретный отрезок времени.

    Трехфазный двигатель в однофазной сети без конденсаторов: схемы подключения

    Принципиальная схема устройства

    Столкнувшись с этой схемой на просторах интернета, человек очень обрадуется. Кстати, это решение впервые было опубликовано в далеком 1967 году.

    Расходы небольшие, почему бы не попробовать и не создать прибор, обеспечивающий беспроблемное подключение асинхронного трехфазного двигателя в однофазную сеть. Но прежде чем вооружиться паяльником следует прочесть отзывы и комментарии.

    Эта схема теоретически имеет право на жизнь, но на практике, в основном, не работает. Возможно, нужна более тщательная настройка. Сказать однозначно или дать гарантии нельзя. Большинство форумчан считает сборку такого прибора напрасной тратой времени, хотя некоторые утверждают обратное.

    Из этого спора можно сделать следующие выводы:

    • схема может работать  на двигателе до 2,2 кВт и частотой вращения 1 500 об/мин;
    • большая потеря мощности на валу электродвигателя;
    • схема требует тщательной опции задающей цепи C1R7, которую нужно подстраивать таким образом, чтобы напряжение на конденсаторе открывало и закрывало ключ, по всей вероятности транзисторы ключа попали внерабочий режим, для этого необходимо заменить резистор R6 или один из R3R4;
    • более надежными способами подключения трехфазного двигателя в однофазную сеть являются конденсаторы или частотный преобразователь.

    Схема была осовременнена в 1999 году. Для запуска трехфазного двигателя в однофазной сети без конденсаторов были отлажены две простейшие схемы.

    Обе опробованы на электродвигателях мощностями от 0.5 до 2.2 кВт и показали довольно таки хорошие результаты (время запуска не многим больше, чем в трехфазном режиме).

    В целях финансовой экономии можно подключить трехфазный двигатель по работающим современным схемам.

    В данных схемах используются симисторы, которые управляются импульсами разной полярности, а также симметричный динистор, который образует управляющие сигналы в поток каждого полупериода питающего напряжения.

    Схема №1 для низкооборотистых электродвигателей

    Она предназначена для запуска электродвигателя с номинальной частотой оборотов, которая равна или меньше 1500 оборотов в минуту. Обмотки данных двигателей соединены в треугольник. Фазосдвигающим устройством в данной схеме является специальная цепочка.

    Изменяя сопротивление, получаем на конденсаторе напряжение, которое сдвинуто относительно основного питающего напряжения на определенный угол.

    Ключевым элементом в данной схеме является симметричный динистор. В момент достижения напряжения на конденсаторе уровня, при котором динистор совершит переключение, подключится заряженный конденсатор к выводу управления симистора.

    В этом момент активируется силовой двунаправленный ключ.

    Схема № 2 для высокооборотистых электрических машин

    Она нужна для запуска электродвигателей с номинальной частотой вращения 3000 оборотов в минуту, а также для двигателей, которые работают на механизмы с немалым моментом сопротивления при запуске.

    В данных случаях необходим больший пусковой момент. Именно поэтому была заменена схема соединения обмоток двигателя, которая создает максимальный пусковой момент. В данной схеме конденсаторы, сдвигающие фазы, заменены парой электронных ключей.

    Первый ключ включен в систему последовательно с обмоткой фазы и образует в ней индуктивный сдвиг тока. Второй — присоединен параллельно обмотке фазы, и образует в ней опережающий емкостной сдвиг тока.

    При данной схеме учитываются обмотки электродвигателей, которые смещены в пространстве на 120 электрических градусов относительно друг друга.

    Наладка заключается в определении оптимального угла сдвига тока в фазных обмотках, при котором производится надежный запуск двигателя.

    Данное действие можно произвести без использования специальных приборов.

    Выполнение данного процесса производится следующим образом. Подача напряжения на двигатель производится пускателем ручного нажимного типа ПНВС-10, через центральный полюс которого присоединяется фазосдвигающая цепочка.

    Контакты среднего полюса находятся в замыкании только лишь при зажатой кнопке пуска.

    Нажав данную кнопку, путем вращения двигателя подстроечного сопротивления, подбирают нужный пусковой момент. Также поступают и при наладке других схем.

    Пример эксплуатации асинхронного электродвигателя 380 В в бытовой сети 220 В без конденсаторов

    Видео подключения трехфазного двигателя в однофазную сеть без конденсаторов: без потери мощности

    Подобрано для вас:

    Домашние умельцы часто используют трехфазный двигатель для включения самодельных станков, работающих от бытовой проводки напряжением 220 вольт внутри гаража или мастерской. Для их запуска чаще всего используется конденсаторная схема.

    В статье собраны советы, как можно подключить такой электродвигатель в однофазную сеть без использования конденсаторной батареи или частотного преобразователя за счет импульса тока от электронного ключа. Они дополняются схемами и видеороликом.

    Принцип работы электронного ключа

    Если собрать обмотки асинхронного электродвигателя по схеме треугольника и подключить к напряжению однофазной сети 220 вольт, то через них станут протекать одинаковые токи, как показано на графике ниже.

    Угловое смещение любой обмотки относительно других составляет 120 градусов. Поэтому магнитные поля от каждой из них будут складываться, устранять взаимное влияние.

    Создаваемое результирующее магнитное поле статора не будет оказывать влияние на ротор: он останется в состоянии покоя.

    Чтобы электродвигатель начал вращение необходимо через его обмотки пропустить сдвинутые на 120О токи, как это делается в нормальной трехфазной системе питания или за счет подключения частотного преобразователя. Тогда двигатель станет вырабатывать мощность с минимальными потерями, обладая наибольшим КПД.

    Широко распространённые промышленные схемы запуска трехфазного двигателя в однофазной сети позволяет ему работать, но с меньшим КПД и большими потерями, что, чаще всего, вполне допустимо.

    Оптимальными считаются схемы подключения обмоток в звезду или треугольник для пуска и работы с блоком конденсаторов.

    Альтернативными методами являются:

    1. Механическая раскрутка ротора, например, за счет ручной намотки шнура на вал и резкого его прокручивания рывком при поданном напряжении;
    2. Подача фазосдвигающего импульса тока электронным ключом в одну или две обмотки электродвигателя.

    Поскольку первый способ «намотал и дернул» не вызывает трудностей, то сразу анализируем второй.

    На верхней схеме показан подключенный параллельно обмотке B электронный ключ «k». Это довольно условное обозначение принято для объяснения принципа работы электродвигателя за счет формирования токового импульса.

    При достижении момента максимальной амплитуды напряжения на обмотке А происходит его включение и вброс фазосдвигающего импульса тока в обмотку фазы B.

    За счет этого импульса происходит сдвиг тока по фазе внутри этой обмотки. Он разбалансирует магнитные моменты, действующие на ротор, создает его вращение.

    Угол сдвига фаз φ, необходимый для запуска двигателя, достаточно выдержать в интервале 50÷70О, хотя идеальный вариант — 120.

    Конструкция фазосдвигающего электронного ключа может собираться из разных деталей. Наиболее подходящие устройства для бытовых целей по мере их сложности представлены ниже.

    Схема запуска электродвигателя до 2 кВт

    Ее описание можно найти в №6 журнала Радио за 1996 год. Автор статьи В Голик предлагает конструкцию двунаправленного (положительной и отрицательной полугармоник) электронного ключа на двух диодах и тиристорах с управлением транзисторным блоком.

    Описание технологии

    Силовые диоды VD1 и VD2 совместно с тиристорами VS1, VS2 образуют мост, который управляется прямым и обратным биполярными транзисторами. Положение подстроечного резистора R7 влияет на напряжение открытия VT1, VT2.

    При открытии транзисторного ключа на каждой полуволне напряжения происходит подача тока на управляющие электроды тиристоров и вброс одним из них соответствующего мощного токового импульса в подключенную обмотку трехфазного электродвигателя.

    Благодаря приложенному моменту магнитных сил к ротору, последний начинает вращение. Его энергия постоянно пополняется на каждой полуволне очередным импульсом.

    Особенности монтажа

    Автор выполнил электронный ключ на стеклопластиковой плате и поместил его в изолированный корпус с возможностью подключения входных и выходных цепей через контактные выводы. Вариант исполнения схемы навесным монтажом тоже имеет право на реализацию.

    Для работы электродвигателей небольших мощностей допустимо силовые диоды и тиристоры размещать без радиаторов. Но обеспечить хороший теплоотвод с них и надежную работу лучше заранее, включив эти элементы в конструкцию электронного ключа.

    Номиналы электронных компонентов указаны прямо на схеме.

    С целью обеспечения безопасности следует хорошо выполнить изоляцию корпуса электронного блока, исключить случайное прикосновение к его деталям во время работы: они все находятся под напряжением 220 вольт.

    Принципы наладки

    Ползунок резистора R7 «Режим» имеет два крайних положения:

    1. минимального;
    2. и максимального сопротивления.

    В первом случае электронный ключ открыт и создает максимальный импульс сдвига тока в обмотке, а во втором — закрыт: вращение ротора исключено.

    Запуск трехфазного двигателя осуществляют на максимально допустимом сдвиге фазы тока внутри обмотки. Затем положением R7 выставляют его рабочие обороты и мощность.

    Проверенные модели

    Автор опробовал схему на двигателях с:

    1. числом оборотов 1360 и мощностью 370 ватт (АААМ63В4СУ1);
    2. 1380 об/мин, 2 кВт.

    Результаты экспериментов его устроили.

    Вместо рекомендованных силовых диодов и тиристоров можно использовать любые другие полупроводниковые элементы. Но, следует обращать внимание на их рабочий ток не менее 10 ампер и обратное напряжение от 300 вольт.

    Две схемы на симисторах

    Следующие 2 конструкции электронного ключа описал В Бурлако в 1999 году. Они опубликованы в журнале Сигнал №4.

    Запуск легкого электродвигателя

    Устройство разработано для двигателей с мощностью до 2,2 кВт, имеет минимальный набор электронных деталей.

    Конденсатор С, обладая емкостным сопротивлением, под действием приложенного к его пластинам напряжения, сдвигает вектор тока вперед на 90 градусов, направляя его на управление динистором VS2.

    Разность потенциалов на конденсаторе регулируется суммарным сопротивлением R1, R2. Импульс динистора поступает на управляющий электрод симистора VS1, который вбрасывает ток в обмотку электродвигателя.

    Схема пуска двигателя под нагрузкой

    Для станков и механизмов, создающих большое противодействие раскрутке ротора, можно порекомендовать переключить обмотки на схему разомкнутой звезды с созданием двух раскручивающих моментов.

    Полярность обмоток двигателя указана точками на схеме. Фазосдвигающие цепочки импульсов тока работают по той же технологи, что и в предыдущих случаях. Номиналы электрических деталей проставлены рядом с их графическими обозначениями.

    Особенности наладки

    Автор Бурлако подавал напряжение на двигатель трехфазным пускателем SG1 марки ПНВС-10, которым комплектовались старые активаторные стиральные машины.

    Все три контакта этого пускателя при нажатии на кнопку «Пуск» замыкаются одновременно, а при отпускании:

    • два крайних остаются в замкнутом состоянии;
    • средний — разрывается, отключая цепь пусковой обмотки.

    Через этот средний контакт в обеих схемах подается импульс тока от фазосдвигающей цепочки. Она работает только на время, необходимое для раскрутки двигателя, после чего выводится из работы, отключается от питающего напряжения.

    Момент запуска двигателя в каждой схеме подбирают после подачи напряжения изменением сопротивления R2. При этом в треугольнике до момента раскрутки ротора проходят большие токи, вызывающие сильные вибрации конструкции. Для их уменьшения рекомендуется подбирать фазосдвигающий импульс ступенями, а не плавно.

    При оптимальном положении R2 двигатель запускается без вибраций.

    Для двигателей небольшой мощности можно осуществлять монтаж симисторов без радиаторов охлаждения, но последние все же повышают надежность схемы.

    Мое мнение о методе

    Рекомендую обратить внимание на следующий вывод.

    В трех рассмотренных схемах ток рабочего режима протекает по всем подключенным обмоткам. Полное расходование приложенной энергии тратится не рентабельно. Только около 30% ее мощности создает вращение ротора. Остальная часть порядка 70% — безвозвратные потери.

    Если кого-то устраивает запуск трехфазного двигателя в однофазной сети по этой схеме, то это ваш выбор. Я же сделал обзор этих схем, чтобы показать их положительные и отрицательные стороны, не навязывая собственное мнение.

    Этой темой стали массово пользоваться создатели видеороликов на Ютубе, набирая количество просмотров и подписчиков, как ЮКА ЛАХТ, в своем видео «Без конденсаторный запуск трехфазного двигателя».

    Делайте выбор осознанно, а если остались вопросы по теме, то сейчас вам удобно задать их в комментариях.


    Смотрите также

    • Выбор гидроизоляции фундамента
    • Пеноблоки что это такое
    • Рисунки тротуарной плитки
    • Какого цвета должен быть плинтус на полу
    • Фото деревенский дом внутри
    • Как из салфетки сделать
    • Электрический одноконтурный котел для отопления дома
    • Эмаль для ванн
    • Какие лучше радиаторы отопления для частного дома
    • Сколько делать розеток на кухне
    • Как сделать из бумаги спиннер фото