Простой лабораторный блок питания своими руками


Лабораторный блок питания своими руками

Главная > Советы электрика > Лабораторный блок питания своими руками

Все мастера, занимающиеся ремонтом электронной аппаратуры, знают о важности наличия лабораторного блока питания, с помощью которого можно получать различные значения напряжения и тока для использования при зарядке устройств, питании, тестировании схем и т. д. В продаже имеется много разновидностей таких аппаратов, но опытным радиолюбителям вполне по силам изготовить лабораторный блок питания своими руками. Использовать для этого можно бывшие в употреблении детали и корпуса, дополнив их новыми элементами.

Самостоятельная сборка БП

Простое устройство

Самый простой блок питания состоит всего из нескольких элементов. Начинающим радиолюбителям будет несложно разработать и собрать эти легкие схемы. Главный принцип – создать выпрямительную схему для получения постоянного тока. При этом уровень напряжения на выходе меняться не будет, он зависит от коэффициента трансформации.

Часть схемы простейшего БП без трансформатора

Основные компоненты для схемы простого блока питания:

  1. Понижающий трансформатор;
  2. Выпрямительные диоды. Можно включить их по схеме моста и получить полноволновое выпрямление либо использовать полуволновое устройство с одним диодом;
  3. Конденсатор для сглаживания пульсаций. Выбирается электролитический тип емкостью 470-1000 мкФ;
  4. Проводники для монтажа схемы. Их поперечное сечение определяется величиной нагрузочного тока.

Для конструирования 12-вольтового БП нужен трансформатор, который понижал бы напряжение с 220 до 16 В, так как после выпрямителя напряжение немного уменьшается. Такие трансформаторы можно найти в бывших в употреблении компьютерных блоках питания или приобрести новые. Можно встретить рекомендации о самостоятельной перемотке трансформаторов, но на первых порах лучше обойтись без этого.

Диоды подойдут кремниевые. Для устройств небольших по мощности есть в продаже уже готовые мосты. Важно их правильно подсоединить.

Это основная часть схемы, пока еще не совсем готовая к использованию. Надо поставить дополнительно после диодного моста стабилитрон для получения лучшего выходного сигнала.

Схема БП со стабилитроном

Получившееся устройство является обычным блоком питания без дополнительных функций и способно поддерживать небольшие нагрузочные токи, до 1 А. При этом возрастание тока может повредить компоненты схемы.

Чтобы получить мощный блок питания, достаточно в этой же конструкции установить один или более усилительных каскадов на транзисторных элементах TIP2955.

Важно! Для обеспечения температурного режима схемы на мощных транзисторах необходимо предусмотреть охлаждение: радиаторное или вентиляционное.

Регулируемый блок питания

Блок питания для шуруповерта 12В своими руками

Блоки питания с регулировкой по напряжению помогут решать более сложные задачи. Имеющиеся в продаже устройства различаются по параметрам регулирования, показателям мощности и др. и подбираются с учетом планируемого использования.

Простой регулируемый блок питания собирается по примерной схеме, представленной на рисунке.

Первая часть схемы с трансформатором, диодным мостом и сглаживающим конденсатором похожа на схему обычного БП без регулирования. В качестве трансформатора также можно использовать аппарат из старого блока питания, главное, чтобы он соответствовал выбранным параметрам по напряжению. Этот показатель для вторичной обмотки ограничивает регулирующий предел.

Как работает схема:

  1. Выпрямленное напряжение выходит к стабилитрону, который определяет максимальную величину U (можно взять на 15 В). Ограниченные параметры этих деталей по току требуют установки в схему транзисторного усилительного каскада;
  2. Резистор R2 является переменным. Меняя его сопротивление, можно получить разные величины выходного напряжения;
  3. Если регулировать также ток, то второй резистор устанавливается после транзисторного каскада. В данной схеме его нет.

Если требуется другой диапазон регулирования, надо установить трансформатор с соответствующими характеристиками, что потребует также включения другого стабилитрона и т. д. Для транзистора необходимо радиаторное охлаждение.

Измерительные приборы для простейшего регулируемого блока питания подойдут любые: аналоговые и цифровые.

Соорудив регулируемый блок питания своими руками, можно применять его для  устройств, рассчитанных на различные значения рабочего и зарядного напряжения.

Двухполярный блок питания

Устройство двуполярного блока питания более сложное. Заниматься его конструированием могут опытные электронщики. В отличие от однополярных, такие БП на выходе обеспечивают напряжение со знаком «плюс» и «минус», что необходимо при питании усилителей.

Схема двухполярного блока питания

Хотя изображенная на рисунке схема является простой, ее исполнение потребует определенных навыков и знаний:

  1. Потребуется трансформатор со вторичной обмоткой, разделенной на две половины;
  2. Одними из главных элементов служат интегральные транзисторные стабилизаторы: КР142ЕН12А – для прямого напряжения; КР142ЕН18А – для обратного;
  3. Для выпрямления напряжения используется диодный мост, можно его собрать на отдельных элементах или применить готовую сборку;
  4. Резисторы с переменным сопротивлением участвуют в регулировании напряжения;
  5. Для транзисторных элементов обязательно монтировать радиаторы охлаждения.

Двухполярный лабораторный блок питания потребует установки также контролирующих приборов. Сборка корпуса производится в зависимости от габаритов устройства.

Защита блока питания

Самый простой метод защиты БП – установка предохранителей с плавкими вставками. Есть предохранители с самостоятельным восстановлением, не требующие замены после перегорания (их ресурс ограничен). Но они не обеспечивают полноценной гарантии. Зачастую происходит повреждение транзистора до перегорания предохранителя. Радиолюбители разработали различные схемы с применением тиристоров и симисторов. Варианты можно найти в сети.

Советы по оформлению корпуса

Как сделать блок питания из энергосберегающих ламп

Для изготовления кожуха устройства каждый мастер использует доступные ему способы. При достаточном везении можно найти готовое вместилище для прибора, но все равно придется менять конструкцию фронтальной стенки, чтобы поместить туда контролирующие приборы и регулирующие ручки.

Некоторые идеи для изготовления:

  1. Измерить габариты всех компонентов и вырезать стенки из алюминиевых листов. На фронтальной поверхности нанести разметку и проделать необходимые отверстия;
  2. Скрепить конструкцию уголком;
  3. Нижнее основание БП с мощными трансформаторами должно быть усилено;
  4. Для внешней обработки прогрунтовать поверхность, покрасить и закрепить лаком;
  5. Схемные компоненты надежно изолируются от внешних стенок во избежание появления напряжения на корпусе при пробое. Для этого возможно проклеить стенки изнутри изолирующим материалом: толстым картоном, пластиком и т. д.

Многие устройства, особенно большой мощности, требуют установки охлаждающего вентилятора. Его можно сделать с функционированием в постоянном режиме либо изготовить схему автоматического включения и выключения по достижении заданных параметров.

Схема реализуется установкой термодатчика и микросхемы, обеспечивающей управление. Чтобы охлаждение было эффективным, необходим свободный доступ воздуха. Значит, задняя панель, около которой монтируют кулер и радиаторы, должна иметь отверстия.

Важно! Во время сборки и ремонта электротехнических устройств надо помнить об опасности поражения электрическим током. Конденсаторы, находившиеся под напряжением, разряжать обязательно.

Собрать качественный и надежный лабораторный блок питания своими руками возможно, если использовать исправные компоненты, четко просчитывать их параметры, пользоваться проверенными схемами и необходимыми приборами.

Видео

ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Доброго времени суток форумчане и гости сайта Радиосхемы! Желая собрать приличный, но не слишком дорогой и крутой блок питания, так чтоб в нём всё было и ничего это по деньгам не стоило, перебрал десятки вариантов. В итоге выбрал лучшую, на мой взгляд, схему с регулировкой тока и напряжения, которая состоит всего из пяти транзисторов не считая пары десятков резисторов и конденсаторов. Тем не менее работает она надёжно и имеет высокую повторяемость. Эта схема уже рассматривалась на сайте, но с помощью коллег удалось несколько улучшить её.

Я собрал эту схему в первоначальном виде и столкнулся с одним неприятным моментом. При регулировке тока не могу выставить 0.1 А - минимум 1.5 А при R6 0.22 Ом. Когда увеличил сопротивление R6 до 1.2 Ом - ток при коротком замыкании получился минимум 0.5 А. Но теперь R6 стал быстро и сильно нагреваться. Тогда задействовал небольшую доработку и получил регулировку тока намного более шире. Примерно от 16 мА до максимума. Также можно сделать от 120 мА если конец резистора R8 перекинуть в базу Т4. Суть в том, что до падения напряжения резистора добавляется падения перехода Б-Э и это дополнительное напряжение позволяет раньше открыть Т5, и как следствие - раньше ограничить ток.

Рекомендуем такой вариант схемы с мультисима. Добавлен резистор (R9 100 Ом) в базу Т5 (Q5) для ограничения тока при крайнем левом положении резистора R8 (470 Ом). Регулирует от 10 мА до максимума.

На базе этого предложения провёл успешные испытания и в итоге получил простой лабораторный БП. Выкладываю фото моего лабораторного блока питания с тремя выходами, где:

  • 1-выход 0-22в
  • 2-выход 0-22в
  • 3-выход +/- 16в

Также помимо платы регулировки выходного напряжения устройство было дополнено платой фильтра питания с блоком предохранителей. Что получилось в итоге - смотрите далее:

Отдельная благодарность за улучшение схемы - Rentern. Сборка, корпус, испытания - aledim.

   Форум по БП

   Обсудить статью ЛУЧШИЙ САМОДЕЛЬНЫЙ БЛОК ПИТАНИЯ

Мощный лабораторный блок своими руками

Приветствую, Самоделкины!Сегодня мы с вами соберем мощнейший лабораторный блок питания. На данный момент он является одним из самых мощных на YouTube.Все началось с постройки водородного генератора. Для запитки пластин автору понадобился мощный блок питания. Покупать готовый блок типа DPS5020 не наш случай, да и бюджет не позволял. Спустя некоторое время схема была найдена. Позже выяснилось, что этот блок питания настолько универсален, что его можно использовать абсолютно везде: в гальванике, электролизе и просто для запитки различных схем. Сразу пробежимся по параметрам. Входное напряжение от 190 до 240 вольт, выходное напряжение - регулируемое от 0 до 35 В. Выходной номинальный ток 25А, пиковый - свыше 30А. Также, блок имеет автоматическое активное охлаждение в виде кулера и ограничения по току, она же защита от короткого замыкания.Теперь, что касается самого устройства. На фото вы можете видеть силовые элементы.От одного взгляда на них захватывает дух, но свой рассказ хотелось бы начать совсем не со схем, а непосредственно с того, от чего приходилось отталкиваться, принимая то или иное решение. Итак, в первую очередь, конструкция ограничена корпусом. Это было очень большим препятствием в построении печатных плат и размещении компонентов. Корпус был куплен самый большой, но все равно его размеры для такого количества электроники малы. Второе препятствие - это размер радиатора. Хорошо, что они нашлись в точности, подходящие под корпус. Как видим радиаторов тут два, но входе построения объединим в один. Помимо радиатора, в корпусе нужно установить силовой трансформатор, шунт и высоковольтные конденсаторы. Они никак не влазили на плату, пришлось их вынести за пределы. Шунт имеет небольшие размеры, его можно положить на дно. Силовой трансформатор был в наличии только таких размеров:Остальные раскупили. Его габаритная мощность 3 кВт. Это конечно намного больше чем нужно. Теперь можно переходить к рассмотрению схем и печаток. В первую очередь рассмотрим блок-схему устройства, так будет легче ориентироваться.Состоит она из блока питания, dc-dc преобразователя, системы плавного пуска и различной периферии. Все блоки не зависят друг от друга, например, вместо блока питания можно заказать готовый. Но мы рассмотрим вариант как сделать все своими руками, а вам уже решать, что купить, а что делать также. Стоит отметить, что необходимо установить предохранители между силовыми блоками, так как при выходе из строя одного элемента, он потащит за собой в могилу остальную схему, а это вылетит вам в копеечку.Предохранители на 25 и 30А в самый раз, так как это номинальный ток, а выдержать они могут на пару ампер больше.Теперь по порядку о каждом блоке. Блок питания построен на всеми любимой ir2153. Также в схему добавлен умощненный стабилизатор напряжения для питания микросхемы. Он запитан от вторичной обмотки трансформатора, параметры обмоток рассмотрим при намотке. Все остальное - это стандартная схема блока питания.Следующий элемент схемы - это плавный пуск. Установить его необходимо для ограничения тока зарядки конденсаторов, чтобы не спалить диодный мост.Теперь самая важная часть блока – dc-dc преобразователь. Его устройство очень сложное, поэтому углубляться в работу не будем, если интересно подробнее узнать про схему, то изучите самостоятельно.Настало время переходить к печатным платам. Вначале рассмотрим плату блока питания.На нее не вместились ни конденсаторы, ни трансформатор, поэтому на плате имеются отверстия для их подключения. Размеры фильтрующего конденсатора подбирайте под себя, так как они бывают разных диаметров.Далее рассмотрим плату преобразователя. Тут тоже можно немного подогнать размещение элементов. Автору пришлось сместить второй выходной конденсатор вверх, так как он не вмещался. Так же можете добавить еще перемычку, это уже на ваше усмотрение.Теперь переходим к травлению платы. Думаю, тут нет ничего сложного.Осталось запаять схемы и можно проводить тесты. В первую очередь запаиваем плату блока питания, но только высоковольтную часть, чтобы проверить не накосячили ли мы во время разводки. Первое включение как всегда через лампу накаливания. Как видим, при подключении лампочки, она загорелась, а это значит, что схема без ошибок. Отлично, можно установить элементы выходной цепи, а как известно, туда нужен дроссель. Его придется изготовить самостоятельно. В качестве сердечника используем вот такое желтое кольцо от компьютерного блока питания:С него необходимо удалить штатные обмотки и намотать свою, проводом 0,8 мм сложенным в две жилы, количество витков 18-20.Заодно можем намотать дросселя для dc-dc преобразователя. Материалом для намотки являются вот такие кольца из порошкового железа.В отсутствие такого, можно применить тот же материал, что и в первом дросселе. Одной из важных задач является соблюдение одинаковых параметров для обоих дросселей, так как они будут работать в параллели. Провод тот же – 0,8 мм, количество витков 19.После намотки, проверяем параметры.Они в принципе совпадают. Далее запаиваем плату dc-dc преобразователя. С этим проблем возникнуть не должно, так как номиналы подписаны. Тут все по классике, сначала пассивные компоненты, потом активные и в последнюю очередь – микросхемы. Настало время заняться подготовкой радиатора и корпуса. Радиаторы соединим между собой двумя пластинками вот таким образом:На словах это все хорошо, надо бы заняться делом. Сверлим отверстия под силовые элементы, нарезаем резьбу. Сам же корпус тоже немного подправим, отломав лишние выступы и перегородки.Когда все готово, приступаем к креплению деталей на поверхность радиатора, но так как фланцы активных элементов имеют контакт с одним из выводов, то необходимо их изолировать от корпуса подложками и шайбами.Крепить будем на винты м3, а для лучшей термо передачи воспользуемся не высыхающей термопастой.Когда разместили на радиаторе все греющиеся части, запаиваем на плату преобразователя ранее не установленные элементы, а также припаиваем провода для резисторов и светодиодов.Теперь можно тестировать плату. Для этого подадим напряжение от лабораторного блока питания в районе 25-30В. Проведем быстрый тест.Как видим, при подключении лампы идет регулировка по напряжению, а также ограничения по току. Отлично! И эта плата тоже без косяков.Тут же можно настроить температуру срабатывания кулера. С помощью подстроечного резистора производим калибровку.Сам же термистор нужно закрепить на радиаторе. Осталось намотать трансформатор для блока питания на вот таком гигантском сердечнике:Перед намоткой необходимо рассчитать обмотки. Воспользуемся специальной программой (ссылку на нее найдете в описании под видеороликом автора, пройдя по ссылке «Источник»). В программе указываем размер сердечника, частоту преобразования (в данном случае 40 кГц). Также указываем количество вторичных обмоток и их мощность. Силовая обмотка на 1200 Вт, остальные на 10 Вт. Также нужно указать каким проводом будут мотаться обмотки, жмем кнопку «Рассчитать», тут нет ничего сложного, думаю разберетесь.Посчитали параметры обмоток и начинаем изготовление. Первичка в один слой, вторичка в два слоя с отводом от середины.Изолируем все с помощью термоскотча. Тут по сути стандартная намотка импульсника.Все готово к установке в корпус, осталось разместить периферийные элементы на лицевой стороне таким образом:Сделать это можно довольно просто, лобзиком и дрелью. Теперь самая трудная часть - разместить все внутри корпуса. В первую очередь соединяем два радиатора в один и закрепляем его.Соединение силовых линий будем проводить вот такой 2-ух миллиметровой жилой и проводом сечением 2,5 квадрата. Также возникли некие проблемы с тем, что радиатор занимает всю заднюю крышку, и там невозможно вывести провод. Поэтому выводим его сбоку.На этом все, сборка завершена. Перед закрытием крышки проводим тестовое включение.Блок завелся, теперь закрываем верхнюю крышку и идем тестировать. Для теста сначала воспользуемся лампочками накаливания на 36В 100Вт.Как видим, блок держит их без труда. Данный вольтамперметр, который купил автор, не может измерить максимальный ток блока даже шунтом, хоть и написано на сайте, что с шунтом может измерять до 50А. Не совершайте такую же ошибку и возьмите себе стрелочный амперметр - надежнее будет. А по поводу проверки - не переживайте, сейчас вы убедитесь в том, что максимальный ток устройства свыше 25А. Для этого воспользуемся предохранителем на 25А и пустим его в короткое замыкание.Его просто плавит, а это значит, что ток тут больше 25 ампер. Также попробуем плавить различные предметы.Скрепка, шайба и даже шило - ничто не устояло перед мощью данного блока.Благодарю за внимание. До новых встреч!

Видео:

Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

9.6

Идея

7.8

Описание

9.4

Исполнение

Итоговая оценка: 8.93 из 10 (голосов: 5 / История оценок)

Facebook

ВКонтакте

Twitter

ОК

+14

Простой лабораторный блок питания

Простой лабораторный блок питанияВ этой статье будет детально разобрано и показано на примере как и из каких деталей можно собрать простенький лабораторный блок питания. Довольно часто радиолюбители сталкиваются проблемой получения определенного напряжения для запитывания различных самодельных устройств, с такой же проблемой столкнулся и автор данной самоделки, которая как раз и позволяет решить проблемы подобного рода.

Материалы и инструменты, которые использовались автором для создания простейшего лабораторного блока питания:

1) Для плат блока питания необходим корпус, его можно приобрести в магазинах электроники, либо как и автор взять от ненужного компьютерного блока питания.2) Так же необходим трансформатор с напряжением на выходе до 30 В и силой тока 1.5 А. Мощность трансформатора стоит рассчитывать из того, какие именно границы напряжения вы хотите сделать для данного блока питания.3) Диодный мост на 3 А4) конденсатор электролитический 50 В 2200 мкф5) конденсатор керамический на 0.1 мкф, он будет нужен, чтобы сгладить пульсации.6) Микросхема LM317 (автор использовал 2 таких микросхемы в своем блоке питания)7) Резистор переменный на 4.7кОм.8) Резистор на 200ом 0.5Ват.9) Конденсатор керамический на 1мкф. 10) В качестве вольтметра автор использовал имеющийся у него старый аналоговый тестер. 11) Текстолит и хлор железа, который будет нужен для травления платы. 12) Клеммы 13) Провода14) Паяльная лампа и паяльные принадлежности. 15) ДВП либо пластик16) дрель

Рассмотрим основные этапы создания и конструктивные особенности лабораторного блока питания собранного автором.

Первым делом автор взял корпус от ненужного блока питания компьютера и занялся подготовкой его к использованию в качестве корпуса для своей самоделки. Для этого корпус был разобран и из него были вытащены внутренности. Затем автор отпилил переднюю панель, с которой выходят провода.Все это показано на фотографиях приведенных ниже:После этого корпус блока питания был собран обратно. Чтобы сделать переднюю панель для лабораторного блока питания автор использовал ДВП, из которого вырезал небольшую дощечку, которая была подогнана по размерам для корпуса. При желании панель можно так же сделать и из пластика, что может положительно сказаться на внешнем виде устройства. Далее автор отрезал крепления платы с одной из сторон и выгнул их так, чтобы имелась возможность в последующем закрепить на них подготовленную переднюю панель.Затем автор приступил к созданию места под трансформатор. Для этого при помощи дрели были просверлены отверстия в нижней части корпуса, через которые и будет крепиться трансформатор.После этого автор приступил к созданию платы для устройства. Для начала ее было необходимо вытравить. Для этого заранее распечатанная плата была перенесена на текстолит, после чего она была кинута в хлорное на 15 минут. После того как плата была вытравлена, автор приступил к сверлению отверстий и лужению платы.Далее автор приступил к пайке элементов согласно схеме устройства, которая приведена ниже. Далее припаивались провода и производилась сборка всей схемы в единый корпус. Очень важно внутреннее расположение сделать таким образом, чтобы микросхема была установлена на радиатор, так как при сильных нагрузках она может прилично нагреваться и без должного охлаждения быстро придет в негодность.По сути прибор полностью собран и готов к использованию, но для начала необходимо провести испытания, чтобы убедиться в правильной работе блока питания и при необходимости устранить его недостатки.Далее автор занялся переделкой старого тестера в вольтметр. Чтобы это сделать автор просто отрезал сам индикатор от пластикового корпуса, после чего установил перемычку на плате тестера в диапазоне 50 В. Затем автор вырезал в передней панели устройства отверстие под получившийся вольтметр и подключил все необходимые провода. После чего плата была изолирована. После окончательной сборки корпуса автор решил установить вентилятор сверху устройства, чтобы осуществлять обдув радиатора и охлаждать микросхему закрепленную на нем. После всех этих действий получился неплохой лабораторный блок питания с довольно простой конструкцией и сборкой. Источник Становитесь автором сайта, публикуйте собственные статьи, описания самоделок с оплатой за текст. Подробнее здесь.

7

Идея

8.6

Описание

6.6

Исполнение

Итоговая оценка: 7.4 из 10 (голосов: 5 / История оценок)

Facebook

ВКонтакте

Twitter

ОК

+6 Добавлено 12 комментариев

Смотрите также