Сезонный тепловой аккумулятор


Применение сезонного грунтового аккумулятора, работающего без теплового насоса

Настоящим постом мы открываем цикл статей об использовании сезонных аккумуляторов тепла. В данной статье на примере жилого района в Швеции рассмотрено применение сезонного грунтового аккумулятора, работающего без теплового насоса.

В строительном секторе центральные солнечные отопительные системы являются наиболее экономически выгодными среди всех возможных солнечных тепловых систем. Посредством интеграции сезонного теплового аккумулятора можно покрыть более 50% энергетических затрат на отопление и горячее водоснабжение. В таблице 1 приведены крупномасштабные отопительные солнечные системы Европы, построенные до 2002 года.

Таблица 1. Десять наибольших центральных отопительных солнечных систем Европы, которые были введены в эксплуатацию до 2000 года (кликните для увеличения изображения)

В центральной и северной Европе еще с 1995 года стали популярны сезонные аккумуляторы для хранения тепловой энергии солнца, накопленной в теплое время года, и ее утилизации в холодное время.

На рисунке ниже представлены 4 вида сезонных аккумуляторов солнечной энергии, но в данной статье будет идти речь непосредственно о грунтовом аккумуляторе (duct heat store).

Виды сезонных аккумуляторов тепловой солнечной энергии (кликните для увеличения изображения)

Для строительства и успешной эксплуатации грунтового аккумулятора необходимо соблюдение таких условий как: соответствующий состав грунта и достаточно свободного пространства.

Концепция данной системы состоит в хранении солнечной тепловой энергии непосредственно в грунте. Подходящими геологическими формациями для ее применения могут быть, к примеру, горная/скалистая почва или водонасыщенный грунт. Зарядка и разрядка грунтового аккумулятора осуществляется с помощью вертикальных теплообменников, помещенных в буровые скважины на глубину 30 – 100 м. На поверхности аккумулятора находится слой изоляции, предотвращающий потери тепла в окружающую среду. Во время зарядки, тепловой поток направлен из центра к периферии, чтобы в результате получить более высокие температуры в центре и более низкие на границе. Во время разрядки направление теплового потока обратное.

Преимуществом такой системы является модульная конструкция, которая дает возможность к расширению. Дополнительные буровые скважины с вертикальными теплообменниками могут быть легко добавлены, например, в случае увеличения количества отапливаемых домов в жилом районе. [Schmidt T., Mangold D., Müller-Steinhagen H., July 2003. Central Solar Heating Plants with Seasonal Storage in Germany. Solar Energy, 76: 165-174.]

В конце 2002 в одном из жилых районов вблизи Стокгольма – Аннеберге была запущена в эксплуатацию солнечная тепловая система с сезонным грунтовым аккумулятором без использования теплового насоса. Разработка данной солнечной тепловой системы с грунтовым аккумулятором в Швеции была частью проекта Европейского Союза EU THERMIE, целью которого являлось исследование и разработка крупномасштабных солнечных отопительных систем для жилищного строительства. Предварительное моделирование и расчет системы были осуществлены в компьютерном программном обеспечении TRNSYS и MINSUN и на основании полученных результатов была выбрана оптимальная конфигурация системы. [Nordell B., Hellström G., 2000. High Temperature Solar Heated Seasonal Storage System for Low Temperature Heating of Buildings. Solar Energy, 69 (6): 511-523]

Одним из требований местного муниципалитета являлось создание жилого района, который был бы экологически чистым. Место для этого было выбрано удачно – весь жилой район окружен хвойным лесом и при этом находится всего в 10 км к северу от Стокгольма. В процессе строительства были использованы такие материалы как дерево твердой породы, водорастворимые краски, экологическая теплоизоляция и т.д. Одна из комнат в каждых апартаментах может быть полностью электрически изолирована, что в конце 90-х считалось благоприятным для здоровья. Каждый житель района ежедневно вносит свой посильный вклад в сохранение и улучшение экологической ситуации, путем соблюдения правил по переработке отходов, а также заботе об окружающей природе.

Данная солнечная тепловая система состоит из 2 400 кв.м солнечных коллекторов, размещенных на крышах 50-ти частных домов, грунтового аккумулятора объемом 60 000 куб.м, 13 сабъюнитов с водными баками-аккумуляторами для горячего водоснабжения, низкотемпературной системы отопления (теплый пол) и дополнительных электронагревателей для отопления и горячего водоснабжения. Отопление домов обеспечивается системой теплых полов с расчетной температурой 27/32 градусов Цельсия. Общая отопительная площадь – 5 444 кв.м. Ежегодное потребление энергии для отопления – 565 МВт*час. Крыши домов сориентированы в юго-восточном направлении с углами наклона 15 гр., 31 гр., 37 гр. На крышах установлены солнечные коллекторы с пропилен гликолем в качестве теплоносителя.

Контур солнечных коллекторов отделен от контура теплового аккумулятора и системы отопления с помощью теплообменников. Солнечная радиация является непостоянной, поэтому для обеспечения круглогодичного горячего водоснабжения и отопления необходим сезонный аккумулятор тепла. Соответственно, такой аккумулятор был спроектирован объемом 60 000 куб.м с 99 скважинами глубиной 65 м и расстоянием между ними 3 м. Около 60 % ежегодного потребления энергии, затрачиваемой на отопление, обеспечивается солнечной тепловой системой. Тем не менее, жители Аннеберга недовольны работой солнечной системы, которая согласно предварительным оценке и расчетам должна была работать значительно эффективнее. В 2007 году были проведены два исследования для выявления причин низкой эффективности системы. Исследования показали, что

1) грунтовый аккумулятор еще не достиг стационарного состояния температур;

2) потребление энергии жильцами на отопления и горячее водоснабжение превышает заданные параметры при моделировании системы;

3) потери в распределительной сети намного выше ожидаемых, в то время как уровень полученной солнечной энергии ниже.

Ожидаемый срок, в течение которого тепловой аккумулятор должен достичь стационарного состояния, был определен на этапе проектирования, как 7-8 лет. По истечении указанного срока, в 2010 – 2011 годах было проведено новое исследования эффективности солнечной системы, о результатах которого читайте в следующей статье из нашего цикла.

Источник

___________________________________________________________

Имея хороший экономный домик, а главное энергоэфективный, можно начать получение прав в гибдд чтобы приобрести себе такой же экономный автомобиль, а лучше электрокар. Собственный транспорт должен быть экологичность насколько это может быть.

Долговременный теплоаккумулятор

Использование долговременных теплоаккумуляторов поможет уменьшить сложности и, возможно, решить некоторые экономические проблемы. Долговременный теплоаккумулятор лучше всего определить как устройство для хранения солнечной энергии в течение длительного времени после того, как она была уловлена, например, от одного сезона до следующего, т.е. сообразуясь с законами природы. Главное различие между системой долговременного аккумулирования тепла и обычной солнечной системой заключается в первую очередь в устранении вспомогательной дублирующей системы (печи) и сопутствующих составных частей на стыке двух систем. Сравним технологическую схему такой системы со схемами некоторых других систем. Тепловой насос может использовать этот долговременный тепловой аккумулятор в качестве источника тепла; если большой бак теплоаккумулятора имеет достаточно высокую температуру, то здание может воспользоваться теплом обычным путем, например через радиационные панели или нагнетание горячего воздуха.

Рис. 1. Система долговременного аккумулирования тепла. Солнечная установка собирает и аккумулирует тепло солнечного излучения круглый год в ясную погоду. Когда необходимо, тепло используется в здании. Вспомогательной дублирующей системы (на органическом топливе) не требуется: 1 - солнечный коллектор; 2 - теплоаккумулятор; 3 - жилище; 4 - температура 30...90°С.

Средства, сэкономленные в результате ликвидации дублирующей системы, можно использовать на сооружение отсека долговременного теплоаккумулятора, так как 100% потребности в отоплении будут удовлетворяться за счет солнечной энергии (за исключением расхода электроэнергии для вентиляторов и насосов), то можно оправдать более высокие первоначальные затраты.

В доме Солтерра, разработанном Уильямом Эдмундсоном, используется смонтированный на крыше солнечный коллектор, через который проходит и нагревается воздух. Нагретый воздух циркулирует по трубам диаметром 100 мм, которые погружены в отсек теплоаккумулятора под домом. Отсек имеет бетонные стены, пол и перекрытие и заполнен водонасыщенной жирной глиной, песком, гравием и даже дробленым камнем. Тепло можно запасать в большом количестве, так что тепло от дополнительного источника не потребуется в течение многих недель. В этом случае солнечные коллекторы можно было бы рассчитать на обеспечение всей потребности в отоплении, а вспомогательная отопительная система была бы не нужна.

Рис. 2. Дом Солтерра Уильяма Б. Эдмундсона: 1 - солнечный коллектор; 2 - изоляция; 3 - пенобетон; 4 - водонасыщенный грунт; 5 - трубы диаметром 100 мм.

В своем проекте Эдмундсон принял массу влажного грунта 1600 кг/м3 и удельную теплоемкость 1,84 кДж/(кг*°K) при теплоаккумулирующей способности около 2950 кДж/(м3*°K). Если грунт нагревать от 27 до 55°С, то он аккумулирует около 81650 кДж/м3. Отсек в доме Эдмундсона имеет объем 250 м3; общая длина труб составляет 610 м, что обеспечивает поверхность теплообмена между трубами и грунтом, равную 260 м2. При вышеприведенных условиях в отсеке накопится около 20*106 кДж. Если дополнительная нагрузка дома составляет 28485 кДж/°K*день, то наружная температура может в среднем составлять (-1°С) в течение 40 дней, прежде чем израсходуются 20*106 кДж (приняв отсутствие потери тепла из отсека).

Летом тепло улавливается и хранится в отсеке. Затем оно обогащается тепловым насосом, чтобы поднять температуру, скажем, от 60 до 120°С, которая достаточна для работы кондиционера абсорбционного типа.

Сезонный грунтовой аккумулятор, работающий без теплового насоса

В строительном секторе центральные солнечные отопительные системы являются наиболее экономически выгодными среди всех возможных солнечных тепловых систем. Посредством интеграции сезонного теплового аккумулятора можно покрыть более 50% энергетических затрат на отопление и горячее водоснабжение. В таблице 1 приведены крупномасштабные отопительные солнечные системы Европы, построенные до 2002 года.

Таблица 1. Десять наибольших центральных отопительных солнечных систем Европы, которые были введены в эксплуатацию до 2000 года

В центральной и северной Европе еще с 1995 года стали популярны сезонные аккумуляторы для хранения тепловой энергии солнца, накопленной в теплое время года, и ее утилизации в холодное время.

На рисунке ниже представлены 4 вида сезонных аккумуляторов солнечной энергии, но в данной статье будет идти речь непосредственно о грунтовом аккумуляторе (duct heat store).

Виды сезонных аккумуляторов тепловой солнечной энергии

Для строительства и успешной эксплуатации грунтового аккумулятора необходимо соблюдение таких условий как: соответствующий состав грунта и достаточно свободного пространства.

Концепция данной системы состоит в хранении солнечной тепловой энергии непосредственно в грунте. Подходящими геологическими формациями для ее применения могут быть, к примеру, горная/скалистая почва или водонасыщенный грунт. Зарядка и разрядка грунтового аккумулятора осуществляется с помощью вертикальных теплообменников, помещенных в буровые скважины на глубину 30 – 100 м. На поверхности аккумулятора находится слой изоляции, предотвращающий потери тепла в окружающую среду. Во время зарядки, тепловой поток направлен из центра к периферии, чтобы в результате получить более высокие температуры в центре и более низкие на границе. Во время разрядки направление теплового потока обратное. Преимуществом такой системы является модульная конструкция, которая дает возможность к расширению. Дополнительные буровые скважины с вертикальными теплообменниками могут быть легко добавлены, например, в случае увеличения количества отапливаемых домов в жилом районе. [Schmidt T., Mangold D., M?ller-Steinhagen H., July 2003. Central Solar Heating Plants with Seasonal Storage in Germany. Solar Energy, 76: 165-174.]

В конце 2002 в одном из жилых районов вблизи Стокгольма – Аннеберге была запущена в эксплуатацию солнечная тепловая система с сезонным грунтовым аккумулятором без использования теплового насоса. Разработка данной солнечной тепловой системы с грунтовым аккумулятором в Швеции была частью проекта Европейского Союза EU THERMIE, целью которого являлось исследование и разработка крупномасштабных солнечных отопительных систем для жилищного строительства. Предварительное моделирование и расчет системы были осуществлены в компьютерном программном обеспечении TRNSYS и MINSUN и на основании полученных результатов была выбрана оптимальная конфигурация системы. [Nordell B., Hellstr?m G., 2000. High Temperature Solar Heated Seasonal Storage System for Low Temperature Heating of Buildings. Solar Energy, 69 (6): 511-523]

Одним из требований местного муниципалитета являлось создание жилого района, который был бы экологически чистым. И конечно же для подобного рода работ необходимы услуги грузчиков, но об этом позднее. Место для этого было выбрано удачно – весь жилой район окружен хвойным лесом и при этом находится всего в 10 км к северу от Стокгольма. В процессе строительства были использованы такие материалы как дерево твердой породы, водорастворимые краски, экологическая теплоизоляция и т.д. Одна из комнат в каждых апартаментах может быть полностью электрически изолирована, что в конце 90-х считалось благоприятным для здоровья. Каждый житель района ежедневно вносит свой посильный вклад в сохранение и улучшение экологической ситуации, путем соблюдения правил по переработке отходов, а также заботе об окружающей природе.

Данная солнечная тепловая система состоит из 2 400 кв.м солнечных коллекторов, размещенных на крышах 50-ти частных домов, грунтового аккумулятора объемом 60 000 куб.м, 13 сабъюнитов с водными баками-аккумуляторами для горячего водоснабжения, низкотемпературной системы отопления (теплый пол) и дополнительных электронагревателей для отопления и горячего водоснабжения. Отопление домов обеспечивается системой теплых полов с расчетной температурой 27/32 градусов Цельсия. Общая отопительная площадь – 5 444 кв.м. Ежегодное потребление энергии для отопления – 565 МВт*час. Крыши домов сориентированы в юго-восточном направлении с углами наклона 15 гр., 31 гр., 37 гр. На крышах установлены солнечные коллекторы с пропилен гликолем в качестве теплоносителя. Контур солнечных коллекторов отделен от контура теплового аккумулятора и системы отопления с помощью теплообменников. Солнечная радиация является непостоянной, поэтому для обеспечения круглогодичного горячего водоснабжения и отопления необходим сезонный аккумулятор тепла. Соответственно, такой аккумулятор был спроектирован объемом 60 000 куб.м с 99 скважинами глубиной 65 м и расстоянием между ними 3 м. Около 60 % ежегодного потребления энергии, затрачиваемой на отопление, обеспечивается солнечной тепловой системой. Тем не менее, жители Аннеберга недовольны работой солнечной системы, которая согласно предварительным оценке и расчетам должна была работать значительно эффективнее. В 2007 году были проведены два исследования для выявления причин низкой эффективности системы. Исследования показали, что

  1. грунтовый аккумулятор еще не достиг стационарного состояния температур;
  2. потребление энергии жильцами на отопления и горячее водоснабжение превышает заданные параметры при моделировании системы;
  3. потери в распределительной сети намного выше ожидаемых, в то время как уровень полученной солнечной энергии ниже.

Ожидаемый срок, в течение которого тепловой аккумулятор должен достичь стационарного состояния, был определен на этапе проектирования, как 7-8 лет. По истечении указанного срока, в 2010 – 2011 годах было проведено новое исследования эффективности солнечной системы, о результатах которого читайте в следующей статье из нашего цикла.

{social}

Тепловой аккумулятор на основе сульфата натрия

Экология потребления.Наука и техника: Теплоаккумулятор с использованием раствора сульфата натрия обеспечивает значительно в 8-10 раз большее количество запасаемого аккумулятором тепла, по сравнению с простой водой

Проблемы накопления и сохранения тепла по прежнему актуальны и весьма заманчиво решить их с помощью на простого нагрева какого либо теплоемкого тела, а с использованием физических особенностей перехода вещества из одного агрегатного состояния в другое. Известно, что количество тепла, необходимое для, например, плавления льда в воду эквивалентно количеству тепла необходимому для нагрева этой же воды на 80 (!) градусов.

К сожалению, число веществ, изменяющих свое агрегатное состояние в диапазоне температур солнечного коллектора (40-70 гр.С) не так велико. Да и те - достаточно дороги. Это прежде всего - парафины. Можно составить смесь парафинов плавящихся в этом диапазоне температур. Но парафины достаточно дороги (>1$US за килограмм). К счастью, есть и другое вещество - сульфат натрия или глауберова соль.

Поскольку в строящемся мною доме предполагается активно использовать тепловой аккумулятор (совместно с солнечным коллектором и отопительными приборами), то есть смысл рассмотреть возможную реализацию его на основе глауберовой соли или сульфата натрия.

Подробнее, что такое сульфат натрия вы можете узнать, набрав в любом поисковике запрос «сульфат натрия» или «глауберова соль», я лишь упомяну об одном замечательном свойстве этого минерала, вернее одной его разновидности – т.н. десятиводном сульфате. Десятиводный он потому, что каждая его молекула «связывает» вокруг себя 10 молекул воды. В результате чего сульфат начинает растворяться в собственной воде с ростом температуры с огромным поглощением тепла. При температуре +32 градуса он становится густой жидкостью. А при охлаждении ниже этой температуры может начать кристаллизоваться и отдавать тепло назад. Количество тепла достаточно велико - 78,5 кДж/моль. Что эквивалентно количеству тепла, запасаемого водой, например (4,2 кДж/кг*град) в диапазоне либо несколько десятков градусов (!) одним литром, либо десятками литров воды!

«Может» - потому, что если насыщенный раствор сульфата натрия находится а абсолютном покое, то кристаллов не образуется. Но если его переохлажденный раствор сотрясти или как то побеспокоить, то начинается лавинообразная кристаллизация с сильным разогревом. Раствор быстро нагревается до +32 и поддерживает эту температуру, пока весь не кристаллизуется. Т.е. в зависимости от обстоятельств и желания, можно получить запасенное тепло либо сразу, по мере остывания. А можно – по желанию, вызвал кристаллизацию переохлажденного раствора.

Эти замечательные свойства, разумеется, открыл не я, они давным-давно известны и используются исследователями альтернативных источников энергии. Вот и я решил провести кое-какие эксперименты. Для чего было закуплено некоторое количество глауберовой соли.

Приготовление раствора.

Глауберова соль продается в обезвоженном виде (иначе ее было бы очень трудно хранить). Поэтому я взял примерно 2 литра горячей воды и начал растворять в ней сульфат натрия до состояния насыщенного раствора (т.е. до тех пор, пока соль не перестанет растворяться). В 2-х литрах растворилось примерно 600-650 мл соли. (мне удобно пользоваться объемными мерами, ввиду отсутствия точных весов). Плотность сульфата - примерно 1,5 Кг/литр, т.е. в литре растворилось примерно 450-480 грамм (что близко к справочным показателям - максимальная его растворимость в воде при 32,4° С, которая составляет 49,8 г в 100 г воды (в расчете на безводную соль). После тщательного двойного процеживания раствора через фильтровальную бумагу (фильтры для кофеварки), я приступил к опытам.

Важно было максимально точно воспроизвести условия, в которых будет «работать» раствор сульфата натрия в условиях теплового аккумулятора. Как то: абсолютная неподвижность ( в подвале канистры с раствором никто беспокоить не будет); достаточно медленные процессы нагрева и охлаждения, поэтому охлаждение осуществляется естественным образом, а нагрев - очень маломощной электрической грелкой, которой я оборачивал бутылку с раствором.

Контроль температуры производился с помощью лабораторного ртутного термометра (к сожалению, электронного в выносным датчиком под рукой не оказалось). Что бы измерять температуру раствора, и при этом не вмешиваться в раствор, пришлось сбоку бутылки приделать специальную П-образную «капсулу» из пенополистирола, в которую вставлялся термометр так, что бы своей колбой с ртутью касаться стенки бутылки. Для улучшения теплопередачи от бутылки к термометру я туда натолкал алюминиевой фольги. Впрочем, важно было отследить динамику температур в различных условиях, а не ее абсолютные значения.

Проведение экспериментов.

Нагрев с помощью электрической грелки раствор до 45 градусов (примерно до такой температуры я рассчитываю заряжать свой теплоаккумулятор в эко-доме) я установил ее место, где она на подвергалась вибрациям, дополнительному нагреву или охлаждению и достаточно прохладное место. Т.е. в погребе (фактически - подвал дома и будет погребом, так что условия схожи). Температура окружающего воздуха +10 градусов.

Результаты проведенных испытаний вы видите на графике:

Пояснения:

Синий график – график остывания воды. Как видите, тут никаких «приключений». Вода остывает по обратной экспоненте, стремясь к температуре окружающего ее воздуха. И чем меньше разница температуры между водой и воздухом, тем медленнее идет остывание.

График остывания раствора соли БЕЗ инициализации кристаллизации совершенно повторяет график остывания воды. Поэтому я даже не стал его рисовать.

Красный график - график остывания насыщенного раствора с внесенной затравкой. Дело в том, что для того, что бы началась естественная кристаллизация в растворе, необходимо наличие какой-либо неоднородности. Обычно ею служит некоторое количество нерастворенной соли на дне сосуда. Т.е. раствор немного пересыщен. По мере остывания раствора, в точке «А» началась кристаллизация соли в бутылке и процесс остывания резко замедлился. Тепло, выделяющееся при кристаллизации нагревало сам раствор и компенсировало теплопотери. Так продолжалось до точки «В».

Следует учитывать, что я фактически измерял не температуру раствора, а температуру поверхности бутылки. Но именно это и важно, поскольку воздух в теплоакккумуляторе будет контактировать не с раствором, а именно с поверхностью канистр, в которых будет находится теплоаккумулирующее вещество, вода или раствор сульфата натрия.

В точке «В» кристаллы заняли примерно 4/5 объема бутылки и выделение тепла замедлилось, хотя ее верхняя часть все еще была на ощупь ощутимо теплее той зоны, в которой находился термометр. Очевидно, что просто передача тепла внутри самой бутылки замедлилась и термометр перестал фиксировать ее.

Зеленый график - график поведения переохлажденного раствора. Раствор без затравки был просто охлажден до +15, а на следующие сутки в нем была вызвана кристаллизация (фактически – прикосновением к бутылке). Сразу начали расти кристаллы по всему объему бутылки, а бутылка фактически мгновенно разогрелась до 27 градусов (наружная температура поверхности). После разогрева часть кристаллов снова «расплавилась» и раствор перешёл в равновесное состояние. Т.е. кристаллизовалась только та часть раствора, необходимая на поддержание температуры равновесия.

Выводы.

Как видим из графиков, теплоаккумулятор с использованием раствора сульфата натрия обеспечивает значительно большее количество запасаемого аккумулятором тепла, практически в 8-10 раз, по сравнению с простой водой. Причем температура раствора находится в самой комфортной температурной зоне для человека - + 20-27 градусов!

Формально можно сказать, что 100 литров раствора могут заменить примерно 1 тонну воды по теплоемкости.

Но наряду с этим достоинством проявляются и его определенные особенности. Не хочу писать «недостатки» потому что они могут обернутся и дополнительными достоинствами, смотря как ими распорядиться.

В частности, достаточно трудно вызвать «монотонную» кристаллизацию раствора, т.е. естественную, в процессе остывания. Это можно сделать затравкой, но тогда процесс становится неуправляемым. Поэтому, очевидно придется придумать какой то прибор с термодатчиком, который бы срабатывал и вызывал кристаллизацию раствора при его охлаждении, например до 20-24 градусов. С другой стороны, следует предусмотреть возможность управления этим прибором вручную. Тогда в ситуации, когда тепловой аккумулятор разряжен до 20 градусов и хотелось бы поднять его температуру за счет кристаллизации раствора сульфата, НО прогноз погоды в ближайшее день-два обещает потепление или просто солнечные дни, которые позволят подзарядить теплоаккумулятор, можно будет лучше немного «потерпеть», но сохранить потенциал ТА полностью. И в конце-концов, ТА - это не один большой бассейн, а набор емкостей с водой или раствором сульфата. И кто мешает организовать достаточно гибкое управление им, что бы начинать кристаллизацию раствора по частям.

Так же следует провести и небольшой экономический анализ целесообразности применения сульфата натрия. Он хотя и недорог, но не бесплатен. Стоимость его – 7-8 рублей за килограмм. А 1 килограмм соли (сухой) дает нам 2,5 литра насыщенного раствора.

Допустим, мы купили 1 тонну соли, что даст нам 2500 литров раствора. И обошлось нам это примерно в 8000 рублей. Теперь давайте сравним.

8000 рублей - это примерно 5000 чистых кВт электроэнергии, или 18.000 МДж тепла. КПД электронагревателей близко к 100%.

8000 рублей - это примерно 5 кубометров дров (3000 кг). Это, с учетом КПД печи даст нам примерно 20.000-25.000 МДж тепла

Просто бесплатная вода (2500 литров) остывая с 40 градусов до 20 (когда еще есть смысл отнимать у нее тепло для обдува помещения воздухом такой температуры) Не отдает 200 МДж

А 2500 литров сульфата натрия дадут нам тепла соответственно в 6 раз (берем по минимуму) больше. Т.е. 200 х 6 = 1200 МДж.

Получается, что прежде чем затраты на сульфатный теплоаккумулятор окупятся, он должен будет совершить как минимум полных «оборотов» 15 по сравнению с электричеством, и 20 по сравнению с дровами.

С одной стороны, затраты на теплоаккумулятор являются разовыми и будут «отбиваться» достаточно долго, очевидно 2-3 года. А за электричество можно платить малыми дозами, и дрова можно использовать «случайные» - валежник вдоль дорог, всякое деревянное старье и отходы. А с другой стороны, и дрова, и электричество можно сжечь только 1 раз. И потом придется вновь тратить очередные «8000 тысяч» на них. А теплоаккумулятор будет служить долгие годы, возможно – десятилетия…

Поэтому тут уж каждый решает сам - стоит ли тратиться на сульфат натрия, или просто увеличить объем обычного водяного теплоаккумулятора в 6-10 раз, и строить ли его вообще… Очевидно, что использование сульфата - выход для тех, кто не может себе позволить достаточно объемный теплоаккумулятор на обычной воде или гравийно-каменнный.опубликовано econet.ru 

P.S. И помните, всего лишь изменяя свое потребление - мы вместе изменяем мир! © econet

Присоединяйтесь к нам в Facebook , ВКонтакте, Одноклассниках


Смотрите также