Схема активного сабвуфера


Активный домашний сабвуфер своими руками

Началось все с того, что полтора года назад купил двенадцатидюймовый низкочастотный динамик с целью собрать автомобильный сабвуфер. Но времени не хватало, и динамик залежался у меня в квартире. И вот полтора года спустя, наконец, решился собрать, но не автомобильный, а активный домашний сабвуфер. В этой статье буду описывать пошаговую инструкцию по расчету и сборке сабвуферов такого типа.

1. Расчет и конструирование корпуса (ящика) сабвуфера

Для расчета корпуса сабвуфера нам понадобятся:

  • Параметры Тиля-Смолла для громкоговорителя,
  • Программа для расчета акустических оформлений JBL Speakershop

1.1.Измерение параметров Тиля-Смолла для громкоговорителя

Обычно эти параметры указываются производителем в паспорте громкоговорителя или на их сайте. Но сейчас большинство громкоговорителей, продающихся на рынках (в том числе и мой громкоговоритель), не имеют указанных этих параметров или не соответствуют им (несмотря на многочисленные попытки, мне так и не удалось найти мой динамик в интернете, а о параметрах Тиля-Смолла уже и речи не могло быть). Поэтому нам придется измерять все самому.

Для этого нам понадобится:

  • Компьютер или ноутбук с ХОРОШЕЙ (то есть с линейной АЧХ) звуковой картой,
  • Программный генератор звукового сигнала, использующий выход наушников звуковой карты (мне лично нравится программа NCH Tone Generator),
  • Вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ,
  • Ящик с фазоинвертором,
  • Резистор 150-220 Ом,
  • Разъемы, провода и т д……..

1.1.1. Сначала проверим линейность АЧХ звуковой карты. Существует большое количество программ, которые автоматически измеряют АЧХ в диапазоне 20-20000Гц (при подключенном состоянии выхода наушников к входу микрофона звуковой карты). Но здесь я буду описывать ручной метод измерения АЧХ в диапазоне 10-500Гц (для измерения параметров Тиля Смолла низкочастотного излучателя важен только этот диапазон). Если под рукой не оказался вольтметр переменного напряжения со способностью измерять напряжение порядка 0,1мВ, не расстраивайтесь, можно использовать обычный недорогой мультиметр (Тестер). Обычно такие мультиметры измеряют переменное напряжение с точностью 0,1В а постоянное напряжение с точностью 0,1 мВ. Чтобы измерять переменное напряжение порядка несколько мВ, нужно всего лишь поставить диодный мост перед входом мультиметра и измерять в режиме вольтметра постоянного напряжения в диапазоне до 200мВ.

Сначала подключаем вольтметр к выходу наушников (Или к правому, или к левому каналу).

Отключаем все звуковые эффекты и эквалайзеры, открываем свойства динамиков и ставим уровень громкости на 100%.

Открываем программу NCH Tone Generator, нажимаем “Options”, в “Tone Interval” выбираем “Frequency”, и ставим шаг на 1Гц.

Закрываем “Options”, ставим уровень громкости на 100%, ставим начальную частоту на 10Гц и нажимаем “Play”. Кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц.

При этом смотрим на значение напряжения на вольтметре. Если максимальная разница амплитуды находится в пределах 2дБ  (1,259 раза), то такая звуковая карта годится для измерения параметров динамика. У меня, например, максимальное значение составляло 624мВ, а минимальное 568мВ, 624/568=1,09859 (0,4дБ), что вполне допустимо.

1.1.2. Перейдем к долгожданным параметрам Тиля-Смолла. Минимум параметров, по которым можно рассчитать и сконструировать акустическое оформление (в данном случае сабвуфер) это:

  • Резонансная частота (Fs),
  • Полная электромеханическая добротность (Qts),
  • Эквивалентный объем (Vas).

Для более профессионального расчета понадобится еще больше параметров, такие как механическая добротность (Qms), электрическая добротность (Qes), чувствительность (SPL), и т д.

1.1.2.1. Определение резонансной частоты (Fs) громкоговорителя.

Собираем вот такую схему.

Динамик при этом должен находиться в свободном пространстве как можно подальше от стен, пола и потолка (я повесил его с люстры). Снова открываем программу NCH Tone Generator, настаиваем громкости так, как было описано выше, ставим начальную частоту на 10Гц и начинаем плавно, шагом 1Гц увеличивать частоту. При этом опять же смотрим на значение вольтметра, которое сначала будет возрастать, достигнет максимальной точки (Umax) на частоте собственного резонанса (Fs), и начнет уменьшаться до минимальной точки (Umin). При дальнейшем увеличении частоты напряжение будет плавно возрастать. График зависимости напряжения (активного сопротивления динамика) от частоты сигнала имеет такой вид.

Та частота, на которой значение вольтметра максимальная, и есть приблизительная резонансная частота (при шаге 1Гц). Чтобы определить точную резонансную частоту, нужно в области приблизительной резонансной частоты менять частоту шагом уже не на 1Гц, а 0,05Гц (точность 0,05Гц). Записываем резонансную частоту (Fs), минимальное значение вольтметра (Umin), значение вольтметра на резонансной частоте (Umax) (в дальнейшем они пригодятся для расчета следующих параметров).

1.1.2.2. Определение полной электромеханической добротности (Qts) громкоговорителя. Находим UF1,F2 по следующей формуле.

Изменяя частоту, добиваемся значений вольтметра соответствующих напряжению UF1,F2. Частот будет две. Одна ниже резонансной частоты(F1), другая выше (F2).

Проверять правильность расчетов можно этой формулой.

Если разница Fs’ и Fs не превышает 1Гц, то смело можно продолжить измерения. Если нет, то надо все сделать сначала. Находим механическую добротность (Qms) по этой формуле.

Электрическую добротность (Qes) находим по этой формуле.

И наконец, определяем полную электромеханическую добротность (Qts) по этой формуле.

1.1.2.3. Определение эквивалентного объема (Vas) громкоговорителя.

Для определения точного эквивалентного объема нам понадобится заранее изготовленный, прочный, герметичный ящик-фазоинвертор с отверстием для нашего динамика.

Объем ящика зависит от диаметра динамика, и выбирается согласно этой таблицы.

Закрепляем динамик к ящику и подключаем к схеме описанной выше (Рис.9). Опять открываем программу NCH Tone Generator, ставим начальную частоту на 10Гц и кнопкой “+” начинаем плавно, шагом 1Гц, повышать частоту генератора до 500Гц. При этом смотрим на значение вольтметра, которое опять же начнет возрастать до частоты FL ,потом уменьшаться, достигнув минимальной точки на частоте настройки фазоинвертора (Fb), снова возрастать и достичь максимальной точки на частоте FH, потом уменьшатся и снова медленно возрастать. График зависимости напряжения от частоты сигнала имеет вид двугорбого верблюда.

И наконец, находим эквивалентный объем (Vas) по этой формуле (где Vb-объем ящика с фазоинвертором).

Повторяем все наши измерения 3-5 раз и берем среднее арифметическое значение всех параметров. Например, если мы получили значения Fs соответственно 30,45Гц 30,75Гц 30,55Гц 30,6Гц 30,8Гц, то берем (30,45+30,75+30,55+30,6+30,8)/5=30,63Гц.

В результате всех моих измерений я получил следующие параметры для моего динамика:

  • Fs=30.75 Гц
  • Qts=0.365
  • Vas=112.9≈113 л

1.2.Моделирование и расчет корпуса (ящика) сабвуфера программой JBL Speakershop.

Существует несколько вариантов акустических оформлений, из которых наиболее распространены следующие варианты.

  • Vented box-ящик с фазоинвертором,
  • Band-pass 4-го, 6-го и 8-го порядка,
  • Passive radiator-ящик с пассивным излучателем,
  • Closed box-закрытый ящик.

Тип акустического оформления выбирается исходя от параметров Тиля-Смолла громкоговорителя. Если Fs/Qts100, то исключительно в Vented box или Band-pass или Closed box. Если 50

Сначала скачиваем и устанавливаем программу JBL Speakershop. Эта программа написана для Windows XP и не работает в Windows 7. Чтобы заставить программу работать в Windows 7, нужно скачать и установить виртуальную машину Windows Virtual PC-XP Mode (скачать можно с официального сайта Microsoft), и запустить установку JBL Speakershop через нее. Открывать JBL Speakershop тоже нужно через виртуальную машину. После открывания программы видим вот такой интерфейс.

Нажимаем “Loudspeaker” и выбираем “Parameters--minimum”, в открытом окне пишем, соответственно, значение резонансной частоты (Fs), значение эквивалентного объема (Vas), значение полной электромеханической добротности (Qts) и нажимаем “Accept”.

При этом программа предложит два оптимальных (с наиболее ровной АЧХ) варианта, один в закрытом оформлении (Closed box), другой в Vented box (ящик с фазоинвертором). Нажимаем “plot”(и в области Vented box и в области Closed box) и смотрим на график АЧХ. Выбираем то оформление, АЧХ которого наиболее подходит к нашим требованиям.

В моем случае это Vented box, поскольку на низких частотах (20-50Гц) у Closed box спад амплитуды намного больше, чем у Vented box (Рисунок выше).

Если объем ящика в оптимальном варианте устраивает, то можно построить ящик с таким объемом и насладится звучанием сабвуфера. Если нет (при слишком больших объемах), то нужно задать свой объем (чем ближе к оптимальному объему, тем лучше) и рассчитать оптимальную частоту настройки фазоинвертора.

Для этого в области Vented box нажимаем “Custom”, в открывшемся окне пишем свой объем ящика, нажимаем “Optimum Fb” (при этом программа рассчитает оптимальную частоту настройки фазоинвертора, при котором АЧХ акустического оформления будет наиболее линейной) а потом “Accept”.

Нажимаем “Box” и выбираем “Vent…”, в открывшемся окне в области “Custom” пишем диаметр трубы (Dv), который будем использовать в качестве фазоинвертора. Если будем использовать два фазоинвертора, то ставим точку на “Area” и пишем суммарную площадь сечения труб.

Не забываем рассчитать минимальный диаметр трубы фазоинвертора по этой формуле, где Ds-диаметр динамика (от центра подвеса) (мм), Xmax-максимальный ход подвижной системы (мм), Fb-частота настройки фазоинвертора (Гц).

Нажимаем “Accept” и в области “Custom” на строке Lv появится длина трубы фазоинвертора. Теперь, когда мы знаем внутренний объем ящика, диаметр и длину трубы фазоинвертора, то смело можно перейти к конструированию акустического оформления, однако если уж очень хочется узнать оптимальное соотношение сторон ящика то можно нажать “Box”, выбрать “Dimensions…”.

1.3.Конструирование корпуса (ящика) сабвуфера

Для получения высококачественного звучания необходимо не только правильно рассчитать, но и тщательно изготовить корпус акустического оформления. После определения внутреннего объема ящика, длины и диаметра трубы фазоинвертора, можно смело поступить к изготовлению корпуса сабвуфера. Материал ящика должен быть достаточно прочным и жестким. Наиболее подходящий материал для корпусов акустических оформлений большой мощности является двадцатимиллиметровый МДФ. Стены ящика крепятся друг к другу саморезами, а щели между ними намазываются герметиком или силиконом. После изготовления ящика делаются отверстия для ручек, и приступают к отделке внешней поверхности. Все неровности выровняются с помощью замазки или эпоксидной смолы (в замазку я добавляю немножко клея ПВА, что предотвращает появление трещин со временем и снижает уровень вибраций). После высыхания замазки поверхности нужно отшлифовать до получения идеально ровных стен. Готовый ящик можно как покрасить, так и покрыть самоклеющейся декоративной пленкой, или просто приклеить плотную ткань. Изнутри к стенам ящика клеится звукопоглощающий материал, состоящий из ваты и марли (в моем случае я приклеил ватину). В качестве фазоинвертора можно использовать пластиковую канализационную трубу или бумажную стержень от разных рулонов, а так же готовый фазоинвертор который можно купить почти в любом музыкальном магазине.

Корпус активного сабвуфера состоит из двух отсеков. В первом отсеке располагается собственно громкоговоритель, а во втором вся электрическая часть (формирователь сигнала, усилитель, блок питания……). В моем случае я расположил блок сумматоров и блок фильтров в отдельном отсеке от блока усилителя мощности, блока питания и блока охлаждения. Изнутри к стенам отсека блока сумматоров и блока фильтров приклеил фольгу, которую подключил к земле (GND). Фольга предотвращает воздействие внешних полей и уменьшает уровень шумов.

Если будете использовать мои печатные платы, то эти отсеки должны иметь следующие размеры.

2. Электрическая часть активного сабвуфера

Перейдем к электрической части активного сабвуфера. Общая схема и принцип работы устройства представляется этой схемой.

Устройство состоит из четырех блоков, собранных на отдельных печатных платах.

  • Блок сумматоров (Summators),
  • Блок фильтров (Subwoofer driver),
  • Блок усилителя мощности (Power amplifier),
  • Блок питания (Power supply) и блок охлаждения (Heatsink fun).

Сначала звуковой сигнал поступает в блок сумматоров (Summators), где происходит суммирование сигналов правого и левого каналов. Потом поступает в блок фильтров (Subwoofer driver), где идет формирование сигнала сабвуфера, что включает в себя регулятор громкости, subsonic filter (фильтр инфра низких частот), bass booster (увеличение громкости на определенной частоте) и Crossover (фильтр нижних частот). После формирования сигнал поступает в блок усилителя мощности (Power amplifier), а потом в громкоговоритель. Обсудим эти блоки по отдельности.

2.1.Блок сумматоров (Summators)

2.1.1.Схема

Сначала рассмотрим схему сумматоров, приведенную на рисунке ниже.

Звуковой сигнал с внешних устройств (компьютер, CD-плеер……..) поступает в блок сумматоров, который имеет 6 стерео входов. 5 из них представляют собой обычные линейные входы, отличающийся друг от друга только типом разъема. А шестой это высоковольтный вход, к которому можно подключать выход динамиков (например, музыкальный центр или автомагнитола, которые не имеют линейного выхода). Каждый вход имеет отдельный сумматор на операционных усилителях, смещающий сигналы правого и левого каналов, что предотвращает поступление звукового сигнала с одного внешнего устройства в другую, при этом дает возможность одновременно подключать к сабвуферу несколько внешних устройств. А также имеются выходы (5 выходов, 6-ой просто не поместился на плате, поэтому и не поставил), которые дают возможность подать тот же сигнал, который поступает в сабвуфер, к входу широкополосной стерео системе. Это очень удобно, когда источник звука имеет только один выход.

2.1.2.Компоненты

В качестве операционных усилителей использованы TL074 (5шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные), но если уж очень хочется, можно поставить специальные аудио конденсаторы (конденсаторы, предназначенные для использования в высококачественных аудио системах). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Катушки L1-L4 содержат 20 витков, намотанных медным проводом с диаметром 0,7мм, на стержне гелевой ручки (3мм). Также использованы разъемы типов RCA, 3.5mm audio jack, 6.35mm audio jack, XLR, WP-8.

2.1.3.Печатная плата

Печатная плата изготовлена по лазерно-утюжной технологии. После пайки деталей печатную плату следует покрыть цапонлаком, чтобы избегать от окисления меди. Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

2.1.4.Фото готового блока сумматоров

Питается блок сумматоров от двухполярного источника питания напряжением ±12В. Входное сопротивление составляет 33кОм.

2.2.Блок фильтров (Subwoofer driver)

2.2.1.Схема

Рассмотрим схему драйвера сабвуфера, приведенную на рисунке ниже.

Суммированный сигнал с блока сумматоров поступает в блок фильтров, который состоит из следующих частей:

  • Регулятор громкости (volume regulator),
  • Фильтр инфра низких частот (subsonic filter),
  • Усилитель баса определенной частоты (bass booster),
  • Фильтр нижних частот (crossover).

Регулирование громкости происходит на двух уровнях. Первый при входе сигнала в блок фильтров, который уменьшает уровень собственных “шумов” блока сумматоров, второй при выходе сигнала с блока фильтров, который уменьшает уровень собственных “шумов” блока фильтров. Регулируется громкость с помощью переменного резистора VR3. После первого уровня регулирования громкости сигнал поступает в так называемый “бас бустер”, представляющее собой устройство, которое увеличивает амплитуду сигналов определенной частоты. То есть, если частота настройки бас бустера вставлен, например на 44Гц, а уровень усиления на 14дБ, то АЧХ имеет такой вид (Ряд1).

Ряд2- частота настройки=44Гц, уровень усиления=9дБ,Ряд3- частота настройки=44Гц, уровень усиления=2дБ,Ряд4- частота настройки=33Гц, уровень усиления=3дБ,Ряд5- частота настройки=61Гц, уровень усиления=6дБ.

Частота настройки бас бустера вставляется при помощи переменного резистора VR5 (в пределах 25…125Гц), а уровень усиления резистором VR4 (в пределах 0…+14дБ). После бас бустера сигнал поступает в фильтр инфранизких частот (subsonic filter), который представляет собой фильтр, срезающий нежелательные, ультранизкие сигналы, которые уже не слышимы для человека, но могут сильно перегрузить усилитель, тем самым уменьшая действительную выходную мощность системы. Частота среза фильтра регулируется с помощью переменного резистора VR2 в пределах 10…80Гц. Если, например, частота среза вставлена на 25Гц, то АЧХ имеет следующий вид.

После фильтра инфранизких частот сигнал поступает в фильтр нижних частот (crossover), который срезает верхние, ненужные для сабвуфера (средние + высокие) частоты. Частота среза регулируется при помощи переменного резистора VR1 в пределах 30…250Гц. Крутизна затухания составляет 12дБ/октава. АЧХ имеет такой вид (при частоте среза 70Гц).

2.2.2.Компоненты

В качестве операционных усилителей использованы TL074 (2шт.), TL072 (1шт.) и NE5532 (1шт.). Резисторы рассчитаны на мощность 0,25Вт или выше (номиналы сопротивлений показаны на схеме). Все электролитические конденсаторы имеют номинальное напряжение 25 Вольт или выше (номиналы емкостей показаны на схеме). В качестве неполярных конденсаторов можно использовать керамические или пленочные конденсаторы (лучше пленочные). Дроссели в цепи питания операционных усилителей предназначены для подавления “шумов”, поступающих с блока питания. Также использованы три сдвоенных (50кОм-2шт., 20кОм-1шт.) и два счетверенных переменных (50кОм-6шт.) резисторов. В качестве счетверенных переменных резисторов можно использовать два сдвоенных.

2.2.3.Печатная плата

Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

2.2.4.Фото готового блока фильтров

Питается блок фильтров от двухполярного источника питания напряжением ±12В.

2.3.Блок усилителя мощности (Power amplifier).

2.3.1.Схема

В качестве усилителя мощности используется усилитель Энтони Холтона с полевыми транзисторами в выходном каскаде. Статей описывающих принцип работы, сборку и настройку усилителя в интернете очень много. Поэтому я ограничусь вложением схемы и моей версии печатной платы.

2.3.2.Печатная плата

Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи. Питается блок усилителя мощности от двухполярного источника питания напряжением ±50…63В. Выходная мощность усилителя зависит от напряжения питания и числа пар полевых транзисторов (IRFP240+IRFP9240) в выходном каскаде.

2.4. Блок питания и блок охлаждения (Power supply)

2.4.1.Схема

2.4.2.Компоненты

В качестве трансформатора питания можно использовать как готовый, так и самодельный трансформатор мощностью приблизительно 200Вт. Напряжения вторичных обмоток показаны на схеме.

Диодный мост Br2 рассчитан на ток 25А. Конденсаторы C1…C12,С29…С31 должны иметь номинальное напряжение 25В. Конденсаторы C13…C28 должны иметь номинальное напряжение 63В (при напряжении питания ниже 60В), или 100В (при напряжении питания выше 60В). В качестве неполярных конденсаторов лучше использовать пленочные конденсаторы. Все резисторы рассчитаны на мощность 0,25Вт. Терморезистор R5 намазывается термопастой и прикрепляется к радиатору усилителя. Рабочее напряжение вентилятора 12В.

2.4.3.Печатная плата

Файлы печатной платы в формате *.lay и *.pdf можно скачать в конце статьи.

3.Заключительный этап сборки сабвуфера

Скачать файлы к статье

Автор: Григорян Гор (cd4028)

Список радиоэлементов
Обозначение Тип Номинал Количество ПримечаниеМагазинМой блокнотU1-U5 C1-C4, C15, C16, C25-C27, C29, C39-C42 C5-C10, C23, C24, C28, C30, C35-C38 C11-C14, C19-C22, C31-C34 C17, C18 R1, R2 R3, R12 R4, R16-R18 R5, R13-R15 R6, R10, R23, R24, R31, R33, R40, R41, R46, R47 R7, R11, R21, R22, R32, R34, R37, R38, R45, R48 R8, R9, R25, R26, R29, R30, R39, R42, R49, R50 R19, R20, R27, R28, R35, R36, R43, R44 L1-L4 L5-L13 U1 U2, U4 U3 C1-C5, C7-C10, C15-C17, C20, C23 C6 C11-C14 C21, C22 VR1-VR3, VR5 VR4 R1, R3, R4, R6 R2, R10, R11, R13, R14 R5, R8 R7, R9 R12, R15-R17, R20, R22, R26, R27 R18, R25 R19, R21 R23, R24, R30, R31, R33 R28 R29 R32 R34, R35 L1-L8 T1-T4 T5, T9, T11, T12 T7, T8, T10 T13, T15, T17 T14, T16, T18 D1, D2, D5, D7 D3, D4, D6 D8, D9 C1, C21-C24, C30, C31 C2, C3 C4, C8, C11, C17 C5 C6, C7 C9 C10, C16 C12-C14, C29 C15 С18-С20, C25-C27 C28 F1 U1 U2 OP1 D1-D8 Br2 T1 C1, C3, C5, C7, C9, C11, C30 C2, C4, C6, C8, C10, C12, C22, C24, C26, C28, C31 C13, C15, C17, C19, C21, C23, C25, C27 C14, C18 C16, C20 R1, R2 R3 R4 R5 VR1 Tr1 F1 M1
Блок сумматоров
Операционный усилитель

TL074

5 Поиск в Utsource В блокнот
Электролитический конденсатор10 мкФ14 Поиск в Utsource В блокнот
Конденсатор33 пФ14 Поиск в Utsource В блокнот
Конденсатор0.1 мкФ12 Поиск в Utsource В блокнот
Электролитический конденсатор470 мкФ2 Поиск в Utsource В блокнот
Резистор

390 Ом

2 Поиск в Utsource В блокнот
Резистор

15 кОм

2 Поиск в Utsource В блокнот
Резистор

20 кОм

4 Поиск в Utsource В блокнот
Резистор

13 кОм

4 Поиск в Utsource В блокнот
Резистор

68 кОм

10 Поиск в Utsource В блокнот
Резистор

22 кОм

10 Поиск в Utsource В блокнот
Резистор

10 кОм

10 Поиск в Utsource В блокнот
Резистор

22 Ом

8 Поиск в Utsource В блокнот
Катушка индуктивности20x3мм4 20 витков, провод 0.7мм, оправа 3ммПоиск в Utsource В блокнот
Катушка индуктивности100 мГн10 Поиск в Utsource В блокнот
Блок фильтров
Операционный усилитель

TL072

1 Поиск в Utsource В блокнот
Операционный усилитель

TL074

2 Поиск в Utsource В блокнот
Операционный усилитель

NE5532

1 Поиск в Utsource В блокнот
Конденсатор0.1 мкФ14 Поиск в Utsource В блокнот
Конденсатор15 нФ1 Поиск в Utsource В блокнот
Конденсатор0.33 мкФ4 Поиск в Utsource В блокнот
Конденсатор82 нФ2 Поиск в Utsource В блокнот
Переменный резистор50 кОм4 Поиск в Utsource В блокнот
Переменный резистор20 кОм1 Поиск в Utsource В блокнот
Резистор

6.8 кОм

4 Поиск в Utsource В блокнот
Резистор

4.7 кОм

5 Поиск в Utsource В блокнот
Резистор

10 кОм

2 Поиск в Utsource В блокнот
Резистор

18 кОм

2 Поиск в Utsource В блокнот
Резистор

2 кОм

8 Поиск в Utsource В блокнот
Резистор

3.6 кОм

2 Поиск в Utsource В блокнот
Резистор

1.5 кОм

2 Поиск в Utsource В блокнот
Резистор

20 кОм

5 Поиск в Utsource В блокнот
Резистор

13 кОм

1 Поиск в Utsource В блокнот
Резистор

36 кОм

1 Поиск в Utsource В блокнот
Резистор

75 кОм

1 Поиск в Utsource В блокнот
Резистор

15 кОм

2 Поиск в Utsource В блокнот
Катушка индуктивности100 мГн1 Поиск в Utsource В блокнот
Блок усилителя мощности
Биполярный транзистор

2N5551

4 Поиск в Utsource В блокнот
Биполярный транзистор

MJE340

4 Поиск в Utsource В блокнот
Биполярный транзистор

MJE350

3 Поиск в Utsource В блокнот
MOSFET-транзистор

IRFP240

3 Поиск в Utsource В блокнот
MOSFET-транзистор

IRFP9240

3 Поиск в Utsource В блокнот
Выпрямительный диод

1N4148

4 Поиск в Utsource В блокнот
Стабилитрон

1N4742

3 Поиск в Utsource В блокнот
Выпрямительный диод

1N4007

2 Поиск в Utsource В блокнот
Конденсатор0.47 мкФ6 Поиск в Utsource В блокнот
Электролитический конденсатор22мкФ 16В2 Поиск в Utsource В блокнот
Конденсатор470 пФ4 Поиск в Utsource В блокнот
Конденсатор1 мкФ1 Поиск в Utsource В блокнот
Электролитический конденсатор470мкФ 16В2 Поиск в Utsource В блокнот
Электролитический конденсатор47мкФ 25В1 Поиск в Utsource В блокнот
Электролитический конденсатор220мкФ 100В2 Поиск в Utsource В блокнот
Конденсатор22 пФ4 Поиск в Utsource В блокнот
Конденсатор0.22 мкФ1 Поиск в Utsource В блокнот
Электролитический конденсатор330мкФ 100В6 Поиск в Utsource В блокнот
Конденсатор0.1 мкФ1 Поиск в Utsource В блокнот
Предохранитель10А1 Поиск в Utsource В блокнот
Блок питания и блок охлаждения
Линейный регулятор

LM78L12

1 Поиск в Utsource В блокнот
Линейный регулятор

LM79L12

1 Поиск в Utsource В блокнот
Операционный усилитель

LM324

1 Поиск в Utsource В блокнот
Выпрямительный диод

1N4007

8 Поиск в Utsource В блокнот
Диодный мост

D25SBA60

1 Поиск в Utsource В блокнот
Биполярный транзистор

BC337

1 Поиск в Utsource В блокнот
Электролитический конденсатор1000 мкФ7 Поиск в Utsource В блокнот
Конденсатор0.1 мкФ11 Поиск в Utsource В блокнот
Электролитический конденсатор6800 мкФ8 Поиск в Utsource В блокнот
Конденсатор1 мкФ2 Поиск в Utsource В блокнот
Конденсатор0.47 мкФ2 Поиск в Utsource В блокнот
Резистор

2.2 кОм

2 Поиск в Utsource В блокнот
Резистор

47 кОм

1 Поиск в Utsource В блокнот
Резистор

10 кОм

1 Поиск в Utsource В блокнот
Терморезистор47 кОм1 Поиск в Utsource В блокнот
Подстроечный резистор100 кОм1 Поиск в Utsource В блокнот
Трансформатор200 Ватт1 Поиск в Utsource В блокнот
Предохранитель1 Поиск в Utsource В блокнот
Вентилятор1 Поиск в Utsource В блокнот
Добавить все

Скачать список элементов (PDF)

Теги:

Как из пассивного сабвуфера сделать активный: инструкция

Как из пассивного сабвуфера сделать активный

Как из пассивного сабвуфера сделать активный, часто спрашивают новички, заинтересованные в усовершенствовании автомобильной акустики. Если знать разницу между этими видами динамика, то процесс переделки не составит никакого труда. Сложность процесса того, как сделать из пассивного сабвуфера активный, заключается в том, что надо суметь определить разницу в звучании и произвести правильные расчеты.

Как переделать пассивный сабвуфер в активный

Новичку полезно будет знать, для чего вообще предназначен этот динамик. Нельзя ли просто использовать пару многоголосых динамиков и спокойно наслаждаться полноценным звучанием? Оказывается, нет.

Примечание. Как известно, сабвуфер предназначен для воспроизведения низких частот, которые имеют низкую локализацию. Если бы не было одного динамика, заключенного в отдельный корпус, то было бы сложно определить, из какой точки идет звук. Он будет казаться не реальным, слишком объемным и обволакивающим.

Кроме того, если раньше, когда не был придуман сабвуфер(см.Как сделать сабвуфер: дельные советы), колонки для воспроизведения различных частот, в том числе и низких, должны были быть громадными и дорогими, то с появлением отдельного саба все значительно упростилось, как в плане объема, так и себестоимости.

Схема динамика

Сабвуфер активный и пассивный

Итак, сабвуферы предназначены для воспроизведения низких частот. Это понятно. Но зачем существуют пассивный и активный их виды? В чем отличия? Попробуем разобраться.

Пассивный

Этот саб по своей конструкции представляет собой низкочастотник, заключенный в отдельный корпус. Чтобы добиться требуемого звучания от него, придется его подключать к двум отдельным элементам: внешнему усилителю и кроссоверу(см.Расчет кроссовера для акустики своими силами). Последний не что иное, как разделительный фильтр, распределяющий частоты и направляющий их на динамики.

Активный

Пассивный сабвуфер и активный сабвуфер

Этот вид сабвуфера уже имеет в своей конструкции встроенный усилитель. Также встроен внутрь его и кроссовер. Это избавляет пользователя от сложного процесса подключения и настройка динамика тоже осуществляется довольно просто.

Примечание. Отметим, что из-за наличия собственного усилителя, активный саб надо отдельно подключать к питанию.

Можно сказать, что активный сабвуфер, это тот же пассивный, но переделанный. Сегодня такой динамик пользуется большей популярностью, нежели пассивный. С другой стороны, активные сабвуферы стоят дороже и далеко не каждый пользователь может позволить себе такое удовольствие.

Переделка

Как сделать пассивный сабвуфер активным

Некоторые пользователи, чтобы не переплачивать за активный сабвуфер, решаются сделать его сами из пассивного. Идея интересная и полностью оправдавшая себя на практике.

Примечание. Переделка пассивного сабвуфера в активный подразумевает подключение к усилителю мощности и кроссоверу, которые надо встроить в динамик. Только вот настройка эта требует специфических знаний.

Расчет показателей

Переделка по схеме

Если бы мы делали активный сабвуфер полностью с нуля, то в первую очередь, нужно было бы скачать из интернета или найти другим способом программу для расчета акустических оформлений.

Примечание. К примеру, это может быть Джи Би Эл Спикер, включающая в себя еще две независимые графические схемы, нужные для определения необходимого объема и размера копуса, а также позволяющие своими силами выбрать два направления для корпуса.

К тому же, надо было бы найти известные значения Тиля-Смолла. Они нужны, кстати, и в нашем случае.

Известные параметры Тиля-Смолла

Дело в том, что излучатели, установленные в динамике, могут не соответствовать вышеприведенным параметрам. И тогда придется все измерять заново.

Измерение

Начали:

  • Сначала измеряется резонансная частота Fs. Этот параметр указывает частоту без любого дополнительного оформления. Вычисляется Fs так: излучатель подвешивается в воздухе на большом расстоянии от посторонних предметов, чтобы на это значение не влияли внешние характеристики;
  • Лучше измерять резонансную частоту в свободном гараже или другом помещении. Динамик подвешиваем на потолок;
  • Открываем программу Тон Генератор на компьютере;
  • Начальная частота ставится на 10Гц, а затем плавно шагом в 1Гц увеличивается частота. Одновременно надо смотреть на показания вольтметра. Благодаря приведенному ниже графику, можно определить требуемое значение;

График резонансной частоты

  • Приблизительной частотой динамика Fs при шаге 1Гц станет максимальное значение вольтметра;
  • Чтобы вычислить точное значение, потребуется поменять частоту уже не на 1Гц, а на пять сотых его части.

Примечание. Некоторые считают, что сильно низкая резонансная частота идеальная для сабвуфера. Это так, но частично, ведь для некоторых оформлений такой низкий резонанс может привести к помехам.

Второе значение
  • Затем измеряется полная электромеханическая добротность Qts. Интересно, что добротность имеет два показателя: механический и электрический. Первый определяется выбором материала подвеса. Измеряется добротность часто кустарным методом: покачиванием. Низкое значение добротности сабвуфера – 0,3/0,35, а высокое – 0,5/0,6.
  • Электромеханическую добротность находят по формуле, где значениями будут выступать две составляющие, одна из которых ниже резонансной частоты, а другая выше.

АЧХ сабвуфера

Эквивалентный объем

Наконец, третье значение, которое нам нужно будет вычислить, это эквивалентный объем Vac:

  • Для определения такого объема понадобится ящик-фазоинвертор с отверстием. В пассивном сабвуфере от производителя уже согласован объем такого ящика в сравнении с диаметром динамика. Поэтому ничего лишнего делать не нужно;
  • Опять же, по программе Тон Генератор определяем значение, как и в случае с резонансной частотой. Только вычисления проводятся по следующей формуле:

Формула определения Vac

Для того чтобы получить высококачественное звучание, одних вычислений мало. Надо тщательно подготовить корпус сабвуфера, переделав его под активный вариант. Что мы добились вычислениями? Определили внутренний объем ящика, длину и диаметр фазоинвертора.

Примечание. Считается, что переделать пассивный сабвуфер в активный намного сложно, чем все сделать заново своими руками. Таким образом, делается самодельный ящик с нужными отверстиями.

Одно знать нужно обязательно: активный сабвуфер (его корпус) должен состоять из 2-х отсеков. Излучатель или громкоговоритель находится в одном из отсеков, а усилитель, кроссовер и блок питания в другом.

Примечание. Изнутри к стенкам отсека, где будут находиться усилитель, блок питания и разделительный фильтр, рекомендуется приклеить фольгу. Она устраняет отрицательное воздействие внешних полей и минимизирует уровень шума.

Активный сабвуфер изнутри с 2-я отсеками

Электрическая схема активного сабвуфера

Что касается электрической составляющей активного сабвуфера, то она прорабатывается по следующей схеме.

Электрическая схема активного сабвуфера

Состоит активный сабвуфер из 4-х блоков:

  • Summators – то есть блок сумматоров;
  • Subwoofer driver или блок кроссовера;
  • Power amplifier или блок усилителя;
  • Power supply или блок питания (взаимодействующий с блоком охлаждения).

Принцип действия основан на следующих этапах:

  • Сначала звук идет в первый отсек — блок сумматоров. Здесь происходит суммирование обоих каналов: правый/левый;
  • Далее звук передается в кроссовер, где формируется сигнал;

Схема фильтра сабвуфера

  • После этого только, как сформировался сигнал, он поступает в усилитель, а уже затем в излучатель.

Итак, мы выяснили, что переделка может быть осуществлена своими руками. В данном случае будет крайне полезно посмотреть видео обзор по теме или соответствующие фото – материалы. Действовать надо строго по инструкции. Таким образом, если все удастся осуществить, мы неплохо сэкономим, ведь цена на активный сабвуфер довольно высока.

Автомобильный активный сабвуфер - схема принципиальная

   После того, как мы сделали корпус для сабвуфера, переходим к электронной начинке саба. Усилитель мощности - cхема усилителя приведена ниже:

   Стабилизатор и преобразователь напряжения. Никаких изменений также не потерпела и схема стабилизатора и преобразователя напряжения. Правда, изменились печатные платы и был добавлен стабилизатор на 15 Вт. Стабилизатор и преобразователь были смонтированы на 2-х платах, размер которых 45х50мм и 160х85 мм соответственно. Не буду углубляться в то, как работает схема. Но расскажу о правильно обмотке трансформатора. Трансформатор обычно намотан на кольце, размер которого 40х25х11. Для начала округляем все острые грани кольца напильником и обматываем изолентой. Обратите внимание, что первичная обмотка содержит 2х6 витков и намотана 5-мм проводом 0.8-0.9 мм. Сначала мы мотаем первую половину обмотки, которая разбита равномерно по всему кольцу. Затем вторую.

   Скручиваем жилы на концах и делаем 4 вывода. После чего мы должны подогнуть под отверстия выводы и обмотать первичную обмотку изолентой. После чего берёмся за вторичную обмотку. У меня, как можно увидеть на картинке, в ней 2х16 витков и она обмотана проводом 1.5мм. Наматываем так же, как и первичную обмотку. После чего мы получим 4 вывода вторичной обмотки. Далее нужно подогнуть под плату и замотать изолентой. Вот и готов трансформатор, теперь нужно зачистить выводы и осталось лишь припаять на печатную плату.

   Возможно, также стоит на каждое из плеч питания ввести дроссели. Их можно намотать на нефритовые стержни диаметров 8 мм и высотой 2 см. 6-8 витков проводом 1.2-1.8мм. На ферритовом кольце намотан входной дроссель проводами 1 мм и содержащий 10 витков, которые равномерно распределены по кольцу. Платы печатные для всех модулей находятся в архиве.

   Вот такой вид имеет готовая плата стабилизатора:

 

   Схема фильтров, многократно проверенная мною:

   Индикатор выходной мощности. Затем на микросхеме LM3915 был собран индикатор выходной мощности. Схему можно видеть чуть ниже:

   Режимы работы индикаторов переключает S1. Если контакт замкнут – режим «столбец», а если разомкнут – «волна». Резистором R5 мы сможем выставить уровень индикатора, нужный нам. Что касается светодиодов, то их, в принципе, вы можно использовать какие угодно.

   «Впихнуть» электронику оказалось крайне непросто, ведь место для неё было оставлено совсем немного, поэтому пришлось немного помудрить. На пластине МДФ 8 мм мы закрепили все платы, ручки управления и коннекторы. REM, клеммы питания, радиатор, гнёзда входов и регулятор фильтров были выведены на внешнюю сторону. Пластина и радиатор окрашена в чёрный цвет. 

   Также было сделано отверстие прямоугольной формы в том месте, где должны были крепиться транзисторы. Для того, чтобы было удобно закреплять транзисторы, была вырезана пластинка из дюралюминия, это нам помогло «нарастить» радиатор до нужного нам уровня. Пластинку прикручиваем к радиатору болтами, а между ними, конечно же, термопаста. Болты оставляем подлиннее, т.к. на них будем садить дюралюминиевую пластинку, которая прижмёт транзисторы к радиатору. На фото вы видите первый вариант усилителя, без транзисторов.

   Плату преобразователя крепим к МДФ с помощью дюралюминиевых уголков. Те, что маленькие, прикручены к пластине и плате, две большие удалены от платы, и благодаря двум растяжкам не дают плате раскачаться.    Плата усилителя держится в основном за счёт микросхемы и транзисторов, прижатых к радиатору пластинкой. Также для этой функции сделан пластмассовый уголок. Не забываем про диэлектрическую пластинку между микросхемой, радиаторами и всеми выходными транзисторами. Также изолируем корпуса микросхем и транзисторов от радиатора. Благодаря двум пластмассовым уголкам держится плата стабилизаторов, а благодарю дюралюминиевой пластики держится плата фильтров, к которой также прикручены три регулятора.

   Провода от клемм питания к плате ПН максимально толстые, не менее 5 кв.мм. Для подсоединения платы индикатора и индикаторов работы сабвуфера использован 8-ми контактный разъем. Также, можно для удобства ввести 2-х контактный разъем для подсоединения динамической головки.

   Платы индикаторов включения и выходной мощности мы закрепляем в специально отведённом месте. Используем пластилин, чтобы залепить отверстия от проводов, а также закрываем индикаторы стеклянной пластинкой. 

   Разумеется, закончив работу, в тот момент я остался доволен полученным результатом. Бас у сабвуфера был достаточно мягким, глубоким и приятным, и создавал неплохое давление. Однако долго пользоваться у меня им не получилось, така как для новой машины построил другую систему и с другим сабвуфером. Что касательно этого, то он был продан, и, надеюсь, по сей день радует другого хозяина. Автор: Корчинский Александр. Понравилась схема - лайкни!

ПРИНЦИПИАЛЬНЫЕ СХЕМЫ УНЧ

Смотреть ещё схемы усилителей

       УСИЛИТЕЛИ НА ЛАМПАХ          УСИЛИТЕЛИ НА ТРАНЗИСТОРАХ  

   

УСИЛИТЕЛИ НА МИКРОСХЕМАХ          СТАТЬИ ОБ УСИЛИТЕЛЯХ   

    

Усилитель с фильтром для сабвуфера — простая схема

Вещь, о которой мы сейчас расскажем, как понятно из названия статьи, является самодельным усилителем для сабвуфера, в народе называемом «Саб». Устройство имеет активный фильтр НЧ, построенный на операционных усилителях, и сумматор, обеспечивающий ввод сигнала с выхода стерео.

Поскольку сигнал для схемы берется с выходов на акустические системы, нет необходимости вмешательства в работающий усилитель. Получение сигнала с динамиков имеет еще одно преимущество, а именно — позволяет сохранить постоянное соотношение громкости сабвуфера к стереосистеме.

Естественно, усиление канала сабвуфера можно регулировать с помощью потенциометра. После отфильтровывания высоких частот и выделения низких (20-150 Гц), звуковой сигнал усиливается с помощью микросхемы TDA2030 или TDA2040, TDA2050. Это дает возможность настройки выходной мощности басов по своему вкусу. В этом проекте успешно работает любой динамик НЧ с мощностью более 50 Ватт на сабвуфер.

Схема фильтра с УМЗЧ сабвуфера

Схема принципиальная ФНЧ и УМЗЧ сабвуфера

Описание работы схемы усилителя

Стерео сигнал подается на разъем In через C1 (100nF) и R1 (2,2 М) на первом канале и C2 (100nF) и R2 (2,2 М), в другом канале. Затем он поступает на вход операционного усилителя U1A (TL074). Потенциометром P1 (220k), работающем в цепи обратной связи усилителя U1A, выполняется регулировка усиления всей системы. Далее сигнал подается на фильтр второго порядка с элементами U1B (TL074), R3 (68k), R4 (150к), C3 (22nF) и C4 (4,7 nF), который работает как фильтр Баттерворта. Через цепь C5 (220nF), R5 (100k) сигнал поступает на повторитель U1C, а затем через C6 (10uF) на вход усилителя U2 (TDA2030).

Конденсатор С6 обеспечивает разделение постоянной составляющей сигнала предусилителя от усилителя мощности. Резисторы R7 (100k), R8 (100k) и R9 (100k) служат для поляризации входа усилителя, а конденсатор C7 (22uF) фильтрует напряжение смещения. Элементы R10 (4.7 k), R11 (150к) и C8 (2.2 uF) работают в петле отрицательной обратной связи и имеют задачу формирования спектральной характеристики усилителя. Резистор R12 (1R) вместе с конденсатором C9 (100nF) формируют характеристику на выходе. Конденсатор C10 (2200uF) предотвращает прохождение постоянного тока через динамик и вместе с сопротивлением динамика определяет нижнюю граничную частоту всего усилителя.

Полезное:  Как от USB получить 12 вольт - инвертор 5/12 В

Защитные диоды D1 (1N4007) и D2 (1N4007) предотвращают появление всплесков напряжений, которые могут возникнуть в катушке динамика. Напряжение питания, в пределах 18-30 В подается на разъем Zas, конденсатор C11 (1000 — 4700uF) — основной фильтрующий конденсатор (не экономьте на его ёмкости). Стабилизатор U3 (78L15) вместе с конденсаторами C12 (100nF), C15 (100uF) и C16 (100nF) обеспечивает подачу напряжения питания 15 В на микросхему U1. Элементы R13 (10k), R14 (10k) и конденсаторы C13 (100uF), C14 (100nF) образуют делитель напряжения для операционных усилителей, формируя половину напряжения питания.

Сборка сабвуфера

Вся система паяется на печатной плате. Монтаж следует начинать от впайки двух перемычек. Порядок установки остальных элементов любой. В самом конце следует впаивать конденсатор C11 потому что он должен быть установлен лежа (нужно согнуть соответствующим образом ножки).

Плата печатная для устройства

Входной сигнал должен быть подключен к разъему In с помощью скрученных проводов (витой пары). Микросхему U2 обязательно необходимо оснастить радиатором большого размера.

Схему следует питать от трансформатора через выпрямительный диодный мост, фильтрующий конденсатор стоит уже на плате. Трансформатор должен иметь вторичное напряжение в пределах 16 — 20 В, но чтобы после выпрямления оно не превышало 30 В. К выходу следует подключить сабвуфер с хорошими параметрами — от головки очень многое зависит.

Усилитель для домашнего сабвуфера своими руками

2- 5,00 Загрузка...

НАЖМИТЕ ТУТ И ОТКРОЙТЕ КОММЕНТАРИИ


Смотрите также