Схема простого импульсного блока питания


ПРОСТОЙ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

ПРОСТОЙ ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩЕЙ ЛАМПЫ

      В этой статье Вы найдёте подробное описание процесса изготовления импульсных блоков питания разной мощности на базе электронного балласта компактной люминесцентной лампы.       Импульсный блок питания на 5… 20 Ватт вы сможете изготовить менее чем за час. На изготовление 100-ваттного блока питания понадобится несколько часов. Можно изготовить и более мощные электронные трансформаторы, например на IR2153, а можно КУПИТЬ ГОТОВЫЙ и переделать под свои напряжения.

      В настоящее время получили широкое распространение Компактные Люминесцентные Лампы (КЛЛ). Для уменьшения размеров балластного дросселя в них используется схема высокочастотного преобразователя напряжения, которая позволяет значительно снизить размер дросселя.

      В случае выхода из строя электронного балласта, его можно легко отремонтировать. Но, когда выходит из строя сама колба, то лампочку обычно выбрасывают.

      Однако электронный балласт такой лампочки, это почти готовый импульсный Блок Питания (БП), причем довольно компактный. Единственное, чем схема электронного балласта отличается от настоящего импульсного блока питания, это отсутствием разделительного трансформатора и выпрямителя, если он необходим.

      В то же время, современные радиолюбители испытывают большие трудности при поиске силовых трансформаторов для питания своих самоделок. Если даже трансформатор найден, то его перемотка требует использования большого количества медного провода, да и массо-габаритные параметры изделий, собранных на основе силовых трансформаторов не радуют. А ведь в подавляющем большинстве случаев силовой трансформатор можно заменить импульсным блоком питания. Если же для этих целей использовать балласт от неисправных энергосберегающих ламп, то экономия составит значительную сумму, особенно, если речь идёт о трансформаторах на 100 Ватт и больше.

Отличие схемы балласта энергосберегающей лампы от импульсного блока питания

      Это одна из самых распространённых электрических схем энергосберегающих ламп. Для преобразования схемы КЛЛ в импульсный блок питания достаточно установить всего одну перемычку между точками А – А’ и добавить импульсный трансформатор с выпрямителем. Красным цветом отмечены элементы, которые можно удалить.

Схема энергосберегающей лампы

      А это уже законченная схема импульсного блока питания, собранная на основе балласта люминисцентной лампы с использованием дополнительного импульсного трансформатора.

      Для упрощения, удалена люминесцентная лампа и несколько деталей, которые были заменены перемычкой.

      Как видите, схема КЛЛ не требует больших изменений. Красным цветом отмечены дополнительные элементы, привнесённые в схему.

Законченная схема импульсного блока питания

Какой мощности блок питания можно изготовить из КЛЛ?

      Мощность импульсного блока питания ограничивается габаритной мощностью импульсного трансформатора, максимально допустимым током ключевых транзисторов и величиной радиатора охлаждения, если он используется.

      Блок питания небольшой мощности можно построить, намотав вторичную обмотку прямо на каркас уже имеющегося дросселя.

БП с вторичной обмоткой прямо на каркас уже имеющегося дросселя

      В случае если окно дросселя не позволяет намотать вторичную обмотку или если требуется построить блок питания мощностью, значительно превышающей мощность КЛЛ, то понадобится дополнительный импульсный трансформатор.

БП с дополнительным импульсным трансформатором

      Если требуется получить блок питания мощностью свыше 100 Ватт, а используется балласт от лампы на 20-30 Ватт, то, скорее всего, придётся внести небольшие изменения и в схему электронного балласта.

      В частности, может понадобиться установить более мощные диоды VD1-VD4 во входной мостовой выпрямитель и перемотать входной дроссель L0 более толстым проводом. Если коэффициент усиления транзисторов по току окажется недостаточным, то придётся увеличить базовый ток транзисторов, уменьшив номиналы резисторов R5, R6. Кроме этого придётся увеличить мощность резисторов в базовых и эмиттерных цепях.

      Если частота генерации окажется не очень высокой, то возможно придётся увеличить емкость разделительных конденсаторов C4, C6.

Импульсный трансформатор для блока питания

      Особенностью полумостовых импульсных блоков питания с самовозбуждением является способность адаптироваться к параметрам используемого трансформатора. А тот факт, что цепь обратной связи не будет проходить через наш самодельный трансформатор и вовсе упрощает задачу расчёта трансформатора и наладки блока. Блоки питания, собранные по этим схемам прощают ошибки в расчётах до 150% и выше. Проверено на практике.

      Не пугайтесь! Намотать импульсный трансформатор можно в течение просмотра одного фильма или даже быстрее, если Вы собираетесь выполнять эту монотонную работу сосредоточенно.

Ёмкость входного фильтра и пульсации напряжения

      Во входных фильтрах электронных балластов, из-за экономии места, используются конденсаторы небольшой ёмкости, от которых зависит величина пульсаций напряжения с частотой 100 Hz.

      Чтобы снизить уровень пульсаций напряжения на выходе блока питания, нужно увеличить ёмкость конденсатора входного фильтра. Желательно, чтобы на каждый Ватт мощности БП приходилось по одной микрофараде или около того. Увеличение ёмкости С0 повлечёт за собой рост пикового тока, протекающего через диоды выпрямителя в момент включения БП. Чтобы ограничить этот ток, необходим резистор R0. Но, мощность исходного резистора КЛЛ мала для таких токов и его следует заменить на более мощный.

      Если требуется построить компактный блок питания, то можно использовать электролитические конденсаторы, применяющиеся в лампах вспышках плёночных «мальниц». Например, в одноразовых фотоаппаратах Kodak установлены миниатюрные конденсаторы без опознавательных знаков, но их ёмкость аж целых 100µF при напряжении 350 Вольт.

Блок питания мощностью 20 Ватт

Блок питания мощностью 20 Ватт

      Блок питания мощностью, близкой к мощности исходной КЛЛ, можно собрать, даже не мотая отдельный трансформатор. Если у оригинального дросселя есть достаточно свободного места в окне магнитопровода, то можно намотать пару десятков витков провода и получить, например, блок питания для зарядного устройства или небольшого усилителя мощности.

      На картинке видно, что поверх имеющейся обмотки был намотан один слой изолированного провода. Я использовал провод МГТФ (многожильный провод во фторопластовой изоляции). Однако таким способом можно получить мощность всего в несколько Ватт, так как большую часть окна будет занимать изоляция провода, а сечение самой меди будет невелико.

      Если требуется бо’льшая мощность, то можно использовать обыкновенный медный лакированный обмоточный провод.

      Внимание! Оригинальная обмотка дросселя находится под напряжением сети! При описанной выше доработке, обязательно побеспокойтесь о надёжной межобмоточной изоляции, особенно, если вторичная обмотка мотается обычным лакированным обмоточным проводом. Даже если первичная обмотка покрыта синтетической защитной плёнкой, дополнительная бумажная прокладка необходима!

      Как видите, обмотка дросселя покрыта синтетической плёнкой, хотя часто обмотка этих дросселей вообще ничем не защищена.

      Наматываем поверх плёнки два слоя электрокартона толщиной 0,05мм или один слой толщиной 0,1мм. Если нет электрокартона, используем любую подходящую по толщине бумагу.

      Поверх изолирующей прокладки мотаем вторичную обмотку будущего трансформатора. Сечение провода следует выбирать максимально возможное. Количество витков подбирается экспериментальным путём, благо их будет немного.

      Мне, таким образом, удалось получить мощность на нагрузке 20 Ватт при температуре трансформатора 60°C, а транзисторов – 42°C. Получить ещё большую мощность, при разумной температуре трансформатора, не позволила слишком малая площадь окна магнитопровода и обусловленное этим сечение провода.

На картинке действующая модель БП

            Мощность, подводимая к нагрузке – 20 Ватт.             Частота автоколебаний без нагрузки – 26 кГц.             Частота автоколебаний при максимальной нагрузке – 32 кГц             Температура трансформатора – 60?С

            Температура транзисторов – 42?С

Блок питания мощностью 100 Ватт

      Для увеличения мощности блока питания пришлось намотать импульсный трансформатор TV2. Кроме этого, я увеличил ёмкость конденсатора фильтра сетевого напряжения C0 до 100µF.

Блок питания мощностью 100 Ватт

      Так как КПД блока питания вовсе не равен 100%, пришлось прикрутить к транзисторам какие-то радиаторы.

      Ведь если КПД блока будет даже 90%, рассеять 10 Ватт мощности всё равно придётся.

      Мне не повезло, в моём электроном балласте были установлены транзисторы 13003 поз.1 такой конструкции, которая, видимо, рассчитана на крепление к радиатору при помощи фасонных пружин. Эти транзисторы не нуждаются в прокладках, так как не снабжены металлической площадкой, но и тепло отдают намного хуже. Я их заменил транзисторами 13007 поз.2 с отверстиями, чтобы их можно было прикрутить к радиаторам обычными винтами. Кроме того, 13007 имеют в несколько раз большие предельно-допустимые токи. Купить отдельно MJE13007 можно ЗДЕСЬ.

      Если пожелаете, можете смело прикручивать оба транзистора на один радиатор. Я проверил, это работает.

      Только, корпуса обоих транзисторов должны быть изолированы от корпуса радиатора, даже если радиатор находится внутри корпуса электронного устройства.

      Крепление удобно осуществлять винтами М2,5, на которые нужно предварительно надеть изоляционные шайбы и отрезки изоляционной трубки (кембрика). Допускается использование теплопроводной пасты КПТ-8, так как она не проводит ток.

      Внимание! Транзисторы находятся под напряжением сети, поэтому изоляционные прокладки должны обеспечивать условия электробезопасности!

Действующий стоваттный импульсный блок питания

      Резисторы эквивалента нагрузки помещены в воду, так как их мощность недостаточна.       Мощность, выделяемая на нагрузке – 100 Ватт.       Частота автоколебаний при максимальной нагрузке – 90 кГц.       Частота автоколебаний без нагрузки – 28,5 кГц.       Температура транзисторов – 75?C.       Площадь радиаторов каждого транзистора – 27см?.       Температура дросселя TV1 – 45?C.

      TV2 – 2000НМ (O28 х O16 х 9мм)

Выпрямитель

      Все вторичные выпрямители полумостового импульсного блока питания должны быть обязательно двухполупериодным. Если не соблюсти это условие, то магинтопровод может войти в насыщение.

      Существуют две широко распространённые схемы двухполупериодных выпрямителей.

      1. Мостовая схема.       2. Схема с нулевой точкой.

      Мостовая схема позволяет сэкономить метр провода, но рассеивает в два раза больше энергии на диодах.

      Схема с нулевой точкой более экономична, но требует наличия двух совершенно симметричных вторичных обмоток. Асимметрия по количеству витков или расположению может привести к насыщению магнитопровода.

      Однако именно схемы с нулевой точкой используются, когда требуется получить большие токи при малом выходном напряжении. Тогда, для дополнительной минимизации потерь, вместо обычных кремниевых диодов, используют диоды Шоттки, на которых падение напряжения в два-три раза меньше.

            Пример.       Выпрямители компьютерных блоков питания выполнены по схеме с нулевой точкой. При отдаваемой в нагрузку мощности 100 Ватт и напряжении 5 Вольт даже на диодах Шоттки может рассеяться 8 Ват.

      100 / 5 * 0,4 = 8(Ватт)

      Если же применить мостовой выпрямитель, да ещё и обычные диоды, то рассеиваемая на диодах мощность может достигнуть 32 Ватт или даже больше.

      100 / 5 * 0,8 * 2 = 32(Ватт).

      Обратите внимание на это, когда будете проектировать блок питания, чтобы потом не искать, куда исчезла половина мощности.

      В низковольтных выпрямителях лучше использовать именно схему с нулевой точкой. Тем более что при ручной намотке можно просто намотать обмотку в два провода. Кроме этого, мощные импульсные диоды недёшевы.

Как правильно подключить импульсный блок питания к сети?

      Для наладки импульсных блоков питания обычно используют вот такую схему включения. Здесь лампа накаливания используется в качестве балласта с нелинейной характеристикой и защищает ИБП от выхода из строя при нештатных ситуациях. Мощность лампы обычно выбирают близкой к мощности испытываемого импульсного БП.

      При работе импульсного БП на холостом ходу или при небольшой нагрузке, сопротивление нити какала лампы невелико и оно не влияет на работу блока. Когда же, по каким-либо причинам, ток ключевых транзисторов возрастает, спираль лампы накаливается и её сопротивление увеличивается, что приводит к ограничению тока до безопасной величины.

      На этом чертеже изображена схема стенда для тестирования и наладки импульсных БП, отвечающая нормам электробезопасности. Отличие этой схемы от предыдущей в том, что она снабжена разделительным трансформатором, который обеспечивает гальваническую развязку исследуемого ИБП от осветительной сети. Выключатель SA2 позволяет блокировать лампу, когда блок питания отдаёт большую мощность.

      Важной операцией при тестировании БП является испытание на эквиваленте нагрузки. В качестве нагрузки удобно использовать мощные резисторы типа ПЭВ, ППБ, ПСБ и т.д. Эти «стекло-керамические» резисторы легко найти на радиорынке по зелёной раскраске. Красные цифры – рассеиваемая мощность.

      Из опыта известно, что мощности эквивалента нагрузки почему-то всегда не хватает. Перечисленные же выше резисторы могут ограниченное время рассеивать мощность в два-три раза превышающую номинальную. Когда БП включается на длительное время для проверки теплового режима, а мощность эквивалента нагрузки недостаточна, то резисторы можно просто опустить в воду.

      Будьте осторожны, берегитесь ожога! Нагрузочные резисторы этого типа могут нагреться до температуры в несколько сотен градусов без каких-либо внешних проявлений!

То есть, ни дыма, ни изменения окраски Вы не заметите и можете попытаться тронуть резистор пальцами.

Как наладить импульсный блок питания?

      Собственно, блок питания, собранный на основе исправного электронного балласта, особой наладки не требует.

      Его нужно подключить к эквиваленту нагрузки и убедиться, что БП способен отдать расчетную мощность.

      Во время прогона под максимальной нагрузкой, нужно проследить за динамикой роста температуры транзисторов и трансформатора. Если слишком сильно греется трансформатор, то нужно, либо увеличить сечение провода, либо увеличить габаритную мощность магнитопровода, либо и то и другое.

      Если сильно греются транзисторы, то нужно установить их на радиаторы.

      Если в качестве импульсного трансформатора используется домотанный дроссель от КЛЛ, а его температура превышает 60… 65?С, то нужно уменьшить мощность нагрузки.

      Не рекомендуется доводить температуру трансформатора выше 60… 65?С, а транзисторов выше 80… 85?С.

ИМПУЛЬСНЫЙ БЛОК ПИТАНИЯ ИЗ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП маломощный импульсный блок питания из подручных материалов своими руками

Каково назначение элементов схемы импульсного блока питания?

Схема импульсного блока питания

R0 – ограничивает пиковый ток, протекающий через диоды выпрямителя, в момент включения. В КЛЛ также часто выполняет функцию предохранителя.

VD1… VD4 – мостовой выпрямитель.

L0, C0 – фильтр питания.

R1, C1, VD2, VD8 – цепь запуска преобразователя.

      Работает узел запуска следующим образом. Конденсатор C1 заряжается от источника через резистор R1. Когда напряжения на конденсаторе C1 достигает напряжения пробоя динистора VD2, динистор отпирается сам и отпирает транзистор VT2, вызывая автоколебания. После возникновения генерации, прямоугольные импульсы прикладываются к катоду диода VD8 и отрицательный потенциал надёжно запирает динистор VD2.

R2, C11, C8 – облегчают запуск преобразователя.

R7, R8 – улучшают запирание транзисторов.

R5, R6 – ограничивают ток баз транзисторов.

R3, R4 – предотвращают насыщение транзисторов и исполняют роль предохранителей при пробое транзисторов.

VD7, VD6 – защищают транзисторы от обратного напряжения.

TV1 – трансформатор обратной связи.

L5 – балластный дроссель.

C4, C6 – разделительные конденсаторы, на которых напряжение питания делится пополам.

TV2 – импульсный трансформатор.

VD14, VD15 – импульсные диоды.

C9, C10 – конденсаторы фильтра.

По материалам сайта http://www.ruqrz.com/

      Для большей наглядности приведено несколько принципиальных схем ламп популярных производителей:

РЕМОНТ ЭНЕРГОСБЕРЕГАЮЩИХ ЛАМП

ОПИСАНИЕ И СХЕМА БОЛЕЕ МОЩНЫХ ИМПУЛЬСНЫХ БЛОКОВ ПИТАНИЯ

Адрес администрации сайта: admin@soundbarrel.ru    

Простые импульсные блоки питания

Несколько раз меня выручали блоки питания, схемы которых стали уже класическими, оставаясь простыми для любого, кто хоть раз уже что-то электронное в своей жизни паял.Аналогичные схемы разрабатывались многими радиолюбителями для разных целей, но каждый конструктор вкладывал в схему что-то свое, менял расчеты, отдельные компоненты схемы, частоту преобразования, мощность, подстраивая под какие-то, известные только самому автору, нужды…

Мне же часто приходилось использовать подобные схемы вместо их громоздких трансформаторных аналогов, облегчая вес и объем своих конструкций, которые необходимо было запитать от сети. Как пример: стерео-усилитель на микросхеме, собранный в дюралевом корпусе от старого модема.

Содержание / Contents

Описание работы схемы, коль она классическая, приводить особого смысла нет. Замечу лишь, что я отказался от использования в качестве схемы запуска от транзистора, работающего в режиме лавинного пробоя, т.к. однопереходные транзисторы типа КТ117 работают в узле запуска гораздо надежнее. Запуск на динисторе мне тоже нравится. На рисунке представлены: а) цоколёвка старых транзисторов КТ117 (без язычка), б) современная цоколёвка КТ117, в) расположение выводов на схеме, г) аналог однопереходного транзистора на двух обычных (подойдут любые транзисторы верной структуры - структуры p-n-p (VT1) типа КТ208, КТ209, КТ213, КТ361, КТ501, КТ502, КТ3107; структуры n-p-n (VT2) типа КТ315, КТ340, КТ342, КТ503, КТ3102) Ошибка. Диод VD1 включить наоборот!Схема на полевых транзисторах несколько сложнее, что вызвано необходимостью защиты их затворов от перенапряжения.Ошибка. Диод VD1 включить наоборот!

Все намоточные данные трансформаторов приведены на рисунках. Максимальная мощность нагрузки, которую может запитать блок питания с трансформатором, выполненном на ферритовом кольце марки 3000НМ 32×16Х8, около 70Вт, на К40×25Х11 той же марки, — 150Вт.

Диод VD1 в обеих схемах запирает схему запуска подачей отрицательного напряжения на эмиттер однопереходного транзистора после запуска преобразователя.

Из особенностей — выключение блоков питания производится замыканием обмотки II коммутирующего трансформатора. При этом нижний по схеме транзистор запирается и происходит срыв генерации. Но, кстати, срыв генерации происходит именно по причине «закорачивания» обмотки.

Запирание транзистора в данном случае, хоть и явно происходит по причине замыкания контактом выключателя эмиттерного перехода, — вторично. Однопереходной транзистор в данном случае не сможет запустить преобразователь, который может находиться в таком состоянии (оба ключа заперты по постоянному току через нулевое практически сопротивление обмоток трансформатора) сколь угодно долго.

Правильно расчитанная и аккуратно собранная конструкция блока питания, как правило, легко запускается под требуемой нагрузкой и в работе ведет себя стабильно.

Константин (riswel)

Россия, г. Калининград

C детства - музыка и электро/радио-техника. Перепаял множество схем самых различных по разным поводам и просто, - для интереса, - и своих, и чужих. За 18 лет работы в Северо-Западном Телекоме изготовил много различных стендов для проверки различного ремонтируемого оборудования. Сконструировал несколько, различных по функционалу и элементной базе, цифровых измерителей длительности импульсов. Более 30-ти рацпредложений по модернизации узлов различного профильного оборудования, в т.ч. - электропитающего. С давних пор все больше занимаюсь силовой автоматикой и электроникой.

Почему я здесь? Да потому, что здесь все - такие же, как я. Здесь много для меня интересного, поскольку я не силен в аудио-технике, а хотелось бы иметь больший опыт именно в этом направлении.

Импульсный блок питания

Что же это за ИИП такое?!

Импульсные блоки питания (англ. Switching Power Supply) вновь и вновь становятся предметом дискуссий, споров, а их проектирование и конструирование вызывают некоторые затруднения в радиолюбительских кругах. Все чаще именно к импульсным устройствам питания обращаются взоры домашних радиомастеров, поскольку они обладают целым рядом неоспоримых преимуществ по сравнению с традиционными трансформаторными блоками. Однако многие радиолюбители, в частности начинающие, не решаются собирать их, несмотря на их повсеместное применение в современном радиоэлектронном производстве.

Причин тому масса. От непонимания принципов действия до сложности схемотехники импульсных блоков вторичного питания. Некоторые просто напросто не могут найти требующуюся радиоэлементную базу. А вот опытные радиоинженеры давно уже отказались от тяжелых габаритных трансформаторов электропитания в бытовой компактной электронике.

Но если для дома применение трансформаторных источников электропитания ещё как то оправдано, то, к примеру, в автомобиле, в дороге, в полевых условиях и т.п. трансформатор вообще бесполезен.

Здесь на выручку приходят импульсные преобразователи напряжения. Они способны черпать электроэнергию буквально от любого аккумулятора или батареи гальванических элементов постоянного тока и преобразовывать ее в нужное напряжение с максимальной мощностью от нескольких ватт до нескольких киловатт.

Согласитесь, когда вы путешествуете любым видом транспорта, и поблизости нет розетки, чтобы подключить к ней зарядное устройство в целях подзарядить севший аккумулятор цифрового фотоаппарата, сотового телефона, цифровой видеокамеры, плеера и мн. др. это, по меньшей мере, доставляет массу неудобств. А сколько раз уже можно было запечатлеть цифровиком что-то понравившееся и тут же отправить с помощью телефона родным и друзьям.

А всего лишь и требуется, что спаять несложную схему импульсного преобразователя напряжения на печатной плате, способной уместиться в ладони, и прихватить с собой пару пальчиковых батареек. Вот и все, что нужно для счастья!

Литературный ликбез на тему ИБП

Однако не будем увлекаться, а перейдем непосредственно к сути статьи. Мы уже не раз рассказывали про теоретические и практические аспекты конструирования в домашних условиях импульсных блоков питания, например, Импульсный преобразователь, Импульсный источник питания, Автомобильный преобразователь напряжения и др; излагали методики расчета трансформаторов, делились полезной литературой по силовой электронике, рекомендуемой для прочтения не только начинающим электронщикам, например, Импульсные источники питания, Расчет силового трансформатора; а в статье Схема преобразователя мощностью 1000 ВА развернулся целый, можно сказать, диспут по переделке схемы.

Ну а сегодня ответим на вопрос, заданный одним из радиолюбителей: а есть что-то на питание +/-25 - 30 вольт (двухполярное) на 4 тройки выводов для запитки УМЗЧ - 4 x TDA7293? Мощностью ватт на 550-600 … для питания от электросети (~220В).

По этому поводу решили даже отдельную статью опубликовать, дабы показать общие теоретические принципы разработки импульсных блоков питания.

Изложенный материал с заострением внимания на отдельных вопросах проектирования и схемотехники импульсных блоков вторичного электропитания призван показать радиолюбителям весь алгоритм их расчета. Все технические, конструкторские, схемные дополнения и решения по мере необходимости будут выкладываться ниже в комментариях. Всех заинтересованных электронщиков и опытных радиоинженеров просим принять участие в обсуждении импульсных блоков питания.

Начнем, пожалуй…

Итак, для начала в общих чертах обозначим, какие основные модули есть в любом импульсном блоке электропитания. В типовом варианте импульсный блок питания условно можно разделить на три функциональные части. Это:

1. ШИМ(PWM)-контроллер, на базе которого собирается задающий генератор обычно с частотой около 30…60 кГц;

2. каскад силовых ключей, роль которых могут выполнять мощные биполярные, полевые или IGBT (биполярные с изолированным затвором) транзисторы; этот силовой каскад может включать в себя дополнительную схему управления этими самыми ключами на интегральных драйверах или маломощных транзисторах; также важна схема включения силовых ключей: мостовая (фул-бридж), полумостовая (халф-бридж) или со средней точкой (пуш-пул);

3. импульсный трансформатор с первичной(ыми) и вторичной(ыми) обмоткой(ами) и, соответственно, выпрямительными диодами, фильтрами, стабилизаторами и проч. на выходе; в качестве сердечника обычно выбирается феррит или альсифер; в общем, такие магнитные материалы, которые способны работать на высоких частотах (в некоторых случаях свыше 100 кГц).

Вот, собственно, и все, что нужно для сборки импульсного блока питания. Выше на фото основные части ИБП выделены. Для наглядности выделим эти модули и на электрической принципиальной схеме любого импульсного блока питания. Для примера:

К слову, здесь силовой каскад включен по схеме со средней точкой.

Теперь помодульно будем разрабатывать схемотехническое решение будущего устройства.

Для начала определимся с задающим генератором. Если быть точнее, то с ШИМ-контроллером. В настоящее время, как вы понимаете, их существует огромное количество. Здесь, пожалуй, основными критериями выбора являются доступность и цена вопроса. Нам нужен не любой генератор, а именно с широтно-импульсной модуляцией. Принцип работы, если в двух словах, то «есть/нет сигнала». На выходе контроллера либо единица (высокий уровень) либо ноль (низкий уровень).

В соответствии с этим выходные транзисторы открыты либо закрыты, подают напряжение на катушку импульсного трансформатора либо нет. Причем происходит такое переключение с высокой периодичностью (как указывалось ранее, обычно частота 30…60 кГц).

Настраивается частота в зависимости от потребностей проектировщика внешней цепью обвязки ШИМ-контроллера, состоящей, как правило, из резисторов и конденсаторов. Вот недавно даже наткнулся на идею использования в качестве источника ШИМ COM порт компьютера. Ну да ладно… Для нашего будущего блока питания возьмем ШИМ-контроллер К1156ЕУ2. Но это не принципиально. Можно взять практически любой двухтактный контроллер. Например, один из наиболее распространенных TL494. Схема задающего генератора на его базе показана выше. Вообще, типовую схему включения любой другой микросхемы можно найти в технической документации на нее (datasheet).

Расчет частоты импульсов блока питания

Контроллер К1156ЕУ2 предназначен для использования в качестве схемы управления импульсными источниками вторичного электропитания, работающими на частоте до 1 МГц. Благодаря высокому быстродействию микросхема нашла широкое применение и хорошо себя зарекомендовала. В случае отсутствия отечественного варианта контроллера его можно заменить на аналоги типа UC1825, UC2825, UC3825. Полумостовые выходные каскады контроллера спроектированы для работы на большую емкостную нагрузку, например, затворы мощных МОП-транзисторов, и коммутируют как втекающий, так и вытекающий ток. Описание выводов К1156ЕУ2 следующее:

Стоит отметить также, что частота импульсов зависит он номиналов резистора и конденсатора на 5 и 6 выводах микросхемы. Причем за паузу (так называемое, мертвое время) между импульсами отвечает емкость конденсатора. А это прямо сказывается на обеспечении одновременного закрытия выходных ключей, дабы избежать сквозных токов. Вопрос особенно актуален при больших мощностях. Сопротивление резистора выбирается из диапазона 3…100 кОм, емкость конденсатора – 0,47…100 нФ. Номограммы для подбора этих радиодеталей ниже на рисунке:

Таим образом, для обеспечения мертвого времени в ?1,5 мкс (чтобы снизить вероятность появления сквозных токов через MOSFET в силовом каскаде) понадобится конденсатор емкостью 15 нФ (0,015мкФ или 15000 пФ). Теперь смотрим на левый график. О частоте дополнительно будет сказано ниже. На данном этапе в качестве номинальной примем 60 кГц. Значит резистор для нашего задающего генератора нужен номиналом ?3 кОм. Поставим подстроечный на 4,7 кОм. Им можно будет слегка повышать частоту, тем самым повышая мощность блока питания в целом.

Синхронизация двух и более ШИМ-контроллеров

Важной функцией К1156ЕУ2 является их совместное использование. Т.е. один генератор будет ведущим, а другой ведомым. Для этого существует функциональный 4 вывод синхронизации. В итоге можно получить два синхронно работающих генератора ШИМ. Применений такому способу можно найти масса. Поскольку генераторы будут работать синхронно, то каждый из них можно нагрузить отдельным выходным каскадом с силовыми ключами и импульсным трансформатором. При этом можно применить трансформаторы меньшей габаритной мощности. Так, если нам нужна общая мощность импульсного блока питания не менее 600 Вт на 4 УМЗЧ, то можно использовать два трансформатора по 300 Вт с подключенными к ним по два УМЗЧ. Соответственно, мы сможем снять часть нагрузки с транзисторов силового каскада, обмоточного провода, также нам понадобиться сердечник меньшего размера. В связи с этим можно даже сэкономить на покупке радиодеталей для будущего ИБП. Схема синхронизации двух ШИМ-контроллеров (ведущего и ведомого) выглядит так:

Однако в общеобразовательных целях ограничимся включением К1156ЕУ2 в единичном (типовом) варианте, т.к. перед нами стоит цель дать вам общие навыки разработки. А уж рациональность использования той или иной схемы, технического решения будет зависеть от цели использования импульсного блока питания.

С первым функциональным модулем будущего блока вторичного электропитания разобрались. Окончательно принимаем схемотехнический вариант генератора на К1156ЕУ2, как показано на рисунке выше под цифрой 1. В случае необходимости на конечной стадии проектирования номиналы деталей можно будет подкорректировать, что, собственно, не скажется на функциональной схеме генератора.

Подбор силовых ключей для блока питания

Теперь о том, чем будет управлять ШИМ-контроллер К1156ЕУ2 или TL494 или любая другая ИМС. В качестве силовых ключей будем использовать MOSFET транзисторы, как наиболее эффективные. Что касается биполярных, то их существенными недостатками являются повышенное остаточное напряжение на коллекторе в режиме насыщения, большая мощность управления по базовой цепи и большое время рассасывания. Все это приводит к значительному снижению КПД ключей. А IGBT или биполярные транзисторы с изолированным затвором слишком дороги и не особо распространены. Значит выбор падает на MOSFET.

Давайте определим границы подбора МОП-транзисторов. По условию нам нужен импульсный блок питания мощностью 600 ватт от электросети 220 вольт. Это значит, что после выпрямительных диодов и фильтрующего конденсатора 220 вольт переменного тока преобразуются в 300…310 вольт постоянного. Это при номинальном напряжении 220 В. Но в электросети может быть и 175 и 250 вольт. Сила тока в цепи номинально будет равна I=P/U или I=600 Вт/300(310) В=1,94…2 ампера.

Будущий импульсный преобразователь будет двухтактного типа, т.к. однотактные хорошо зарекомендовали себя на мощностях до 100 ватт. Схему включения силового каскада двухтактного импульсного блока питания выбираем из трех существующих. Это, как было сказано, мостовая (full-bridge), полумостовая (half-bridge) или со средней точкой (push-pull). Последняя схема наиболее эффективна с напряжением на входе до 100 вольт и мощностью до 500 ватт. В принципе можно использовать и пуш-пульную схему включения, но не будем повторяться, т.к. она как раз и является темой диспута в статье “Схема преобразователя мощностью 1000 ВА”. Полумостовая и мостовая схемы эффективно используются при более высоком напряжении на входе (а у нас 310 В) и с мощностями до 1 кВт в первом и выше 1 кВт во втором случае. Нам подходит полумостовая схема включения силового каскада.

Частоту переключения силовых транзисторов возьмем порядка 60 кГц. Из-за возможного дрейфа частоты она может повыситься до 65 кГц. Можно, конечно, увеличить частоту до 100 кГц, а то и больше. Однако многие магнитные материалы, применяемые в качестве сердечников импульсных трансформаторов, не способны работать на таких частотах. К тому же при повышении частоты нам понадобятся высокочастотные выпрямительные мощные диоды. А они не дешевы и для многих труднодоступны. К тому же, после двухполупериодного выпрямителя частота повышается в два раза. Так что ограничимся частотой в 60 кГц, как наиболее оптимальной.

Теперь определим амплитуду номинального напряжения на первичной обмотке импульсного трансформатора с учетом падения напряжения на переходе транзисторов. U=310/2 – u, где u – падение напряжения на переходе MOSFET. Поскольку транзисторы мы ещё не выбрали, то возьмем в среднем u=0,7 В. Отсюда U=(310/2)-0,7=154,3 В. Минимальная амплитуда при падении напряжения в сети до 175 вольт составит не более 123 В, а максимальная при повышении до 250 В – не менее 176 В. Для выбора МДП транзисторов исходим из максимально допустимой силы тока (600/123=4,8 А) и напряжения (176 В). По расчетам нам нужен MOSFET с напряжением сток-исток от 200 вольт и максимально допустимой силой тока через переход не ниже 6 ампер. Данным условиям отвечают, например, IRF630, 2SK1117, 2SK1917, IRF740, IRFP460, IRF830 и пр. Здесь опять же исходим из доступности и стоимости. Для нашего примера возьмем IRFP460. Силовые ключи подобрали.

Диоды выпрямительного моста на входе импульсного блока питания подбираем с учетом обратного напряжения от 400 вольт и силу тока от 2 ампер (600/(175 В*2 шт.)=1,71 А) при мостовой схеме. Берем диодный мост типа KBU810. Схема сетевого выпрямителя будет выглядеть следующим образом:

Резисторы R1 и R2 являются балластными и использованы для разряда высоковольтных конденсаторов в целях безопасности.

Расчет и намотка импульсного трансформатора

Теперь произведем расчет импульсного трансформатора.

Расчет трансформатора является наиболее сложной, важной и «тонкой» частью всего расчета импульсного блока питания. Для этого эффективнее всего воспользоваться компьютерными программами, самые популярные из которых можно скачать на нашем радиолюбительском сайте. Ссылки на программы для расчета трансформатора и их подробное описание находятся также в вышеназванных статьях.

Итак, мы имеем в качестве исходных данных размах напряжений питания 247…355 В (при девиации напряжения сети 175…250 В), мощность не менее 600 ватт, эффективная индукция магнитопровода от 0,1 до 0,2 Тл, эффективная магнитная проницаемость магнитопровода при использовании в качестве сердечника ферритовое кольцо марки М2500НМС1 К65х40х9 составляет 1800…2000. Выше приведено действительное напряжение электросети для расчета импульсного трансформатора в программе Design tools pulse transformers 4.0.0.0 и ей подобных (см. статьи). Однако, как я советовал, программы лучше применять сразу все комплексно. Соответственно, в некоторых нужно указывать напряжение непосредственно на первичной обмотке импульсного трансформатора. Чуть выше мы приводили схему сетевого выпрямителя для питания импульсного блока. Как видите, там сетевое напряжение с помощью делителя преобразуется в двуполярное +/-154,3 В. Указано номинальное напряжение при сетевом в 220 В. Соответственно, при девиации напряжения сети 175…250 В на первичной обмотке оно будет колебаться в пределах не 247…355 вольт (такое после выпрямительных диодов и фильтрующих конденсаторов), а 247/2-0,7…355/2-0,7, т.е. 122,8…176,8 вольт. Будьте внимательны!

Думаем, что с помощью программ не составит особого труда определить основные характеристики необходимого импульсного трансформатора. Для взятого нами кольца К65х40х9 мы имеем следующее. КПД около 98%; число витков в первичной обмотке порядка 55 диаметром 1,2 мм; число витков каждой вторичной обмотки для напряжения +/-30 В составляет 10+10 с отводом от середины провода диаметром 1,5 мм. Все данные для намотки трансформатора нам известны. В результате самостоятельного изготовления должно получиться что-то подобное, а может и лучше (обмотки лучше размещать более равномерно по кольцу):

Переходим непосредственно к схемотехнической части разработки.

Проектирование схемы электрической принципиальной ИБП

Мы уже определили, что импульсный блок питания у нас будет двухтактный с полумостовым включением силового оконечного каскада, состоящего из двух мощных MOSFET IRFP460. В качестве ШИМ-контроллера выбрали микросхему К1156ЕУ2Р. Теперь перед нами стоит задача по объединению всех трех функциональных модулей, каждый из которых имеет свою электрическую цепь. Вместо того, чтобы изобретать велосипед, можно доработать имеющуюся типовую электрическую схему уже спроектированного ИБП на выбранном нами контроллере. В конечном счете, мы получили вот такой вариант схемы импульсного блока питания:

Как можно видеть, в нее входят все три модуля, рассмотренные нами выше.

Дополнительно с помощью реле и ограничивающего резистора R1 (типа С5-16MB или С5-5В) на входе реализован плавный пуск, позволяющий избежать резких бросков тока. Реле можно применить на напряжение как 12, так и 24 вольта с подбором резистора R19. Варистор RU1 защищает входную цепь от импульсов чрезмерной амплитуды. Конденсаторы С1—С4 и двухобмоточный дроссель L1 образуют сетевой помехоподавляющий фильтр, предотвращающий проникновение высокочастотных пульсаций, создаваемых преобразователем, в питающую сеть. L1 наматывается до заполнения окна проводом диаметра 0,5 мм на магнитопроводе Ш7х7 из альсифера ТЧ60, ТЧК55 или феррита типа 2000НМ. Обмотки дросселя содержат равное число витков. Можно применить магнитопровод типа К24х14х7. Тогда мотают 50 витков в 2 провода.

Подстроечный резистор R16 и конденсатор С12 определяют частоту преобразования. Для уменьшения ЭДС самоиндукции трансформатора Т2 параллельно каналам транзисторов включены демпферные диоды VD7 и VD8. Диоды Шоттки VD2 и VD3 защищают коммутирующие транзисторы и выходы микросхемы DA2 от импульсов обратного напряжения.

Токовый трансформатор Т1 намотан на ферритовом кольце К10×6x3 марки 4000НМ или на К12×8x3 марки 2000НМ. Первичная обмотка содержит 1 виток провода диаметром 0,5 мм или монтажного провода в поливинилхлоридной изоляции. Вторичная обмотка - 100 витков с отводом от середины провода ПЭЛШО диаметром 0,06…0,12 мм. Обмотки следует изолировать, например, лакотканью. Ток протекает через первичную обмотку трансформатора Т1. Напряжение вторичной обмотки через резистор R12 поступает на вход компаратора тока 9 вывод микросхемы DA2. В момент, когда напряжение на этом входе превысит порог срабатывания компаратора (1 вольт), генерация импульсов возбуждения будет прекращена. Ток срабатывания защиты зависит от числа витков вторичной обмотки трансформатора Т1, емкости конденсатора С8 и сопротивления резисторов R8, R9 (подстроечный), R12.

С момента включения в сеть до возбуждения инвертора микросхема К1156ЕУ2Р получает питание от параметрического стабилизатора напряжения на резисторе R2 (сопротивление которого, возможно, нужно будет понизить) и стабилитроне VD4 через диод VD5. В этом режиме микросхема потребляет ток не более 2 мА. После возбуждения инвертора ШИМ-контроллер питает вспомогательный выпрямитель VD13—VD16, напряжение с которого стабилизировано микросхемой КР142ЕН8В (или любой другой на напряжение стабилизации 15 вольт). Диоды VD5 и VD18 исключают взаимное влияние двух источников питания микросхемы К1156ЕУ2Р.

Оптрон U1 обеспечивает гальваническую развязку цепи обратной связи. Цепь ОС нужна для стабилизации выходного напряжения импульсного блока питания. Если оно превысит номинальное, то резко возрастет ток через стабилитрон VD17 и излучающий диод оптрона. В результате этого открывается фототранзистор оптрона. Напряжение на входе компаратора обратной связи по напряжению увеличивается (1 ножка микросхемы). Уменьшается длительность импульсов на выходе генератора. Это приводит к снижению выходного напряжения до номинального уровня.

Принцип действия схемы импульсного блока питания должен быть понятен. Теперь перейдем к советам по проектированию компоновки печатной платы и монтажу радиодеталей.

Советы по монтажу и изготовлению печатной платы для ИБП

Для обеспечения работы мощного импульсного источника питания необходимо уделить особое внимание расположению элементов на печатной плате и их монтажным соединениям. Длинные проводники могут стать причиной паразитной индуктивности и возникновению ненужной ЭДС, что, в конечном счете, приведет к генерации. Отсюда вытекает резкое повышение потребляемой мощности и сбой в работе генератора, который обязательно скажется на работе выходных силовых ключей в виде их пробоя сквозными токами. Поэтому длины всех проводников должны быть минимальными, выводы конденсаторов – короткими (особенно блокировочных, сглаживающих ВЧ пульсации). Со стороны монтажа на печатной плате под радиодеталями задающего генератора и ШИМ-контроллером должно быть оставлено много места для экрана. Конденсатор C21 должен иметь низкую собственную индуктивность. Его необходимо расположить не далее 6 мм от вывода 15 микросхемы DA2 для подавления высокочастотных помех. Сильноточные цепи необходимо выполнять минимальной длины. Ширина дорожек сильноточных цепей выбирается размером 5 мм и более. Для слаботочных цепей достаточно ширины дорожки в 0,8…1,5 мм. При этом следует исходить из зависимости 0,5 ампер тока на ширину дорожки 0,5 мм. С учетом вытравливания меди – минимальная ширина 0,8 мм. В том месте, где невозможно проложить дорожку большой ширины, при лужении на нее напаивают слой припоя или по всей длине напаивают луженый провод, тем самым увеличивая толщину.

В заключение стоит пару слов уделить такому нехорошему явлению, как скин-эффект. В результате него переменный ток высокой частоты при протекании по проводнику распределяется не равномерно по сечению, а преимущественно в поверхностном слое. Это может иметь печальные последствия для нашего импульсного трансформатора при больших мощностях. Поэтому рекомендуется мотать силовые обмотки трансформатора не одиночным проводом большого сечения, т.к. пользы от него никакой не будет, а «косичкой», сплетенной из нескольких проводов меньшего диаметра. Получается своего рода литцендрат. Тем самым мы улучшим добротность обмоток, повысим КПД и качество импульсного трансформатора. Обратите внимание, как намотана первичная обмотка:

На фото 8 косичек по 15 проводов в каждой. Смотрится солидно, не правда ли?

Эпилог

В данной, как оказалось, далеко некороткой, статье рассмотрены наиважнейшие моменты конструирования импульсных боков питания, с которыми обязательно столкнется каждый решившийся на создание ИИП радиолюбитель. Мы постарались максимально четко расписать весь алгоритм действий. Более подробно рассмотрели моменты, на которых стоит акцентировать внимание. Все дополнительные советы и рекомендации выкладывайте в комментариях.

Радиолюбителей интересуют электрические схемы:

Лабораторный БПСетевой БП для Си-Би

Как сделать импульсный блок питания своими руками

Сфера применения импульсных блоков питания в быту постоянно расширяется. Такие источники применяются для питания всей современной бытовой и компьютерной аппаратуры, для реализации источников бесперебойного электропитания, зарядных устройств для аккумуляторов различного назначения, реализации низковольтных систем освещения и для других нужд.

В некоторых случаях покупка готового источника питания мало приемлема с экономической или технической точки зрения и сборка импульсного источника собственными руками является оптимальным выходом из такой ситуации. Упрощает такой вариант и широкая доступность современной элементной базы по низким ценам.

Структурная схема импульсного источника питания

Наиболее востребованными в быту являются импульсные источники с питанием от стандартной сети переменного тока и мощным низковольтным выходом. Структурная схема такого источника показана на рисунке.

Сетевой выпрямитель СВ преобразует переменное напряжение питающей сети в постоянное и осуществляет сглаживание пульсаций выпрямленного напряжения на выходе. Высокочастотный преобразователь ВЧП осуществляет преобразование выпрямленного напряжения в переменное или однополярное напряжение, имеющее форму прямоугольных импульсов необходимой амплитуды.

В дальнейшем такое напряжение либо непосредственно, либо после выпрямления (ВН) поступает на сглаживающий фильтр, к выходу которого подключается нагрузка. Управление ВЧП осуществляется системой управления, получающей сигнал обратной связи от выпрямителя нагрузки.

Такая структура устройства может быть подвергнута критике из-за наличия нескольких звеньев преобразования, что снижает КПД источника. Однако, при верном выборе полупроводниковых элементов и качественном расчете и изготовлении моточных узлов, уровень потерь мощности в схеме мал, что позволяет получать реальные значения КПД выше 90%.

Принципиальные схемы импульсных блоков питания

Решения структурных блоков включают не только обоснование выбора вариантов схемной реализации, но и практические рекомендации по выбору основных элементов.

Сетевой выпрямитель с фильтром

Для выпрямления сетевого однофазного напряжения используют одну из трех классических схем изображенных на рисунке:

  • однополупериодную;
  • нулевую (двухполупериодную со средней точкой);
  • двхполупериодную мостовую.

Каждой из них присущи достоинства и недостатки, которые определяют область применения.

Однополупериодная схема отличается простотой реализации и минимальным количеством полупроводниковых компонентов. Основными недостатками такого выпрямителя являются значительная величина пульсации выходного напряжения (в выпрямленном присутствует лишь одна полуволна сетевого напряжения) и малый коэффициент выпрямления.

Коэффициент выпрямления Кв определяется соотношением среднего значения напряжения на выходе выпрямителя Udк действующему значению фазного сетевого напряжения Uф.

Для однополупериодной схемы Кв=0.45.

Для сглаживания пульсации на выходе такого выпрямителя требуются мощные фильтры.

Нулевая, или двухполупериодная схема со средней точкой, хоть и требует удвоенного числа выпрямительных диодов, однако, этот недостаток в значительной мере компенсируется более низким уровнем пульсаций выпрямленного напряжения и ростом величины коэффициента выпрямления до 0.9.

Основным недостатком такой схемы для использования в бытовых условиях является необходимость организации средней точки сетевого напряжения, что подразумевает наличие сетевого трансформатора. Его габариты и масса оказываются несовместимыми с идеей малогабаритного самодельного импульсного источника.

Двухполупериодная мостовая схема выпрямления имеет те же показатели по уровню пульсации и коэффициенту выпрямления, что и нулевая схема,но не требует наличия сетевого трансформатора. Это компенсирует и главный недостаток – удвоенное количество выпрямительных диодов как с точки зрения КПД, так и по стоимости.

Для сглаживания пульсаций выпрямленного напряжения наилучшим решением является использование емкостного фильтра. Его применение позволяет поднять величину выпрямленного напряжения до амплитудного значения сетевого (при Uф=220В Uфм=314В). Недостатками такого фильтра принято считать большие величины импульсных токов выпрямительных элементов, но критичным этот недостаток не является.

Выбор диодов выпрямителя осуществляется по величине среднего прямого тока Ia и максимального обратного напряжения UBM.

Приняв величину коэффициента пульсации выходного напряжения Кп=10%, получим среднее значение выпрямленного напряжения Ud=300В. С учетом мощности нагрузки и КПД ВЧ преобразователя (для расчета принимается 80%, но на практике получится выше, это позволит получить некоторый запас).

Ia – средний ток диода выпрямителя, Рн- мощность нагрузки, η – КПД ВЧ преобразователя.

Максимальное обратное напряжение выпрямительного элемента не превышает амплитудного значения напряжения сети (314В), что позволяет использовать компоненты с величиной UBM =400В со значительным запасом. Использовать можно как дискретные диоды, так и готовые выпрямительные мосты от различных производителей.

Для обеспечения заданной (10%) пульсации на выходе выпрямителя емкость конденсаторов фильтра принимается из расчета 1мкФ на 1Вт выходной мощности. Используются электролитические конденсаторы с максимальным напряжением не менее 350В. Емкости фильтров для различных мощностей приведены в таблице.

Высокочастотный преобразователь: его функции и схемы

Высокочастотный преобразователь представляет собой однотактный или двухтактный ключевой преобразователь (инвертор) с импульсным трансформатором. Варианты схем ВЧ преобразователей приведены на рисунке.

Однотактная схема. При минимальном количестве силовых элементов и простоте реализации имеет несколько недостатков.

  1. Трансформатор в схеме работает по частной петле гистерезиса, что требует увеличения его размеров и габаритной мощности;
  2. Для обеспечения мощности на выходе необходимо получить значительную амплитуду импульсного тока, протекающего через полупроводниковый ключ.

Схема нашла наибольшее применение в маломощных устройствах, где влияние указанных недостатков не столь значительно.

Двухтактная схема со средней точкой трансформатора (пушпульная). Получила свое второе название от английского варианта (push-pull) описания работы. Схема свободна от недостатков однотактного варианта, но имеет собственные – усложненная конструкция трансформатора (требуется изготовление идентичных секций первичной обмотки) и повышенные требования к максимальному напряжению ключей. В остальном решение заслуживает внимания и широко применяется в импульсных источниках питания, изготавливаемых своими руками и не только.

Двухтактная полумостовая схема. По параметрам схема аналогична схеме со средней точкой, но не требует сложной конфигурации обмоток трансформатора. Собственным недостатком схемы является необходимость организации средней точки фильтра выпрямителя, что влечет четырехкратное увеличение количества конденсаторов.

Благодаря простоте реализации схема наиболее широко используется в импульсных источниках питания мощностью до 3 кВт. При больших мощностях стоимость конденсаторов фильтра становится неприемлемо высокой по сравнению с полупроводниковыми ключами инвертора и наиболее выгодной оказывается мостовая схема.

Двухтактная мостовая схема. По параметрам аналогична другим двухтактным схемам, но лишена необходимости создания искусственных «средних точек». Платой за это становится удвоенное количество силовых ключей, что выгодно с экономической и технической точек зрения для построения мощных импульсных источников.

Выбор ключей инвертора осуществляется по амплитуде тока коллектора (стока) IКМАХ и максимальному напряжению коллектор-эмиттер UКЭМАХ. Для расчета используются мощность нагрузки и коэффициент трансформации импульсного трансформатора.

Однако, прежде необходимо рассчитать сам трансформатор. Импульсный трансформатор выполняется на сердечнике из феррита, пермаллоя или витого в кольцо трансформаторного железа. Для мощностей до единиц кВт вполне подойдут ферритовые сердечники кольцевого или Ш-образного типа. Расчет трансформатора ведется исходя из требуемой мощности и частоты преобразования. Для исключения появления акустического шума частоту преобразования желательно вынести за пределы звукового диапазона (сделать выше 20 кГц).

При этом необходимо помнить, что при частотах близких к 100 кГц значительно возрастают потери в ферритовых магнитопроводах. Сам расчет трансформатора не составляет труда и легко может быть найден в литературе. Некоторые результаты для различных мощностей источников и магнитопроводов приведены в таблице ниже.

Расчет произведен для частоты преобразования 50 кГц. Стоит обратить внимание, что при работе на высокой частоте имеет место эффект вытеснения тока к поверхности проводника, что приводит к снижению эффективной площади сечения проводов обмотки. Для предотвращения подобного рода неприятностей и снижения потерь в проводниках необходимо выполнять обмотку из нескольких жил меньшего сечения. При частоте 50 кГц допустимый диаметр провода обмотки не превышает 0.85 мм.

Параметры импульсных трансформаторов и ключей ВЧ-преобразователя

Зная мощность нагрузки и коэффициент трансформации можно рассчитать ток в первичной обмотке трансформатора и максимальный ток коллектора силового ключа. Напряжение на транзисторе в закрытом состоянии выбирается выше, чем выпрямленное напряжение, поступающее на вход ВЧ-преобразователя с некоторым запасом (UКЭМАХ>=400В). По этим данным производится выбор ключей. В настоящее время наилучшим вариантом является использование силовых транзисторов IGBT или MOSFET.

Для диодов выпрямителя на вторичной стороне необходимо соблюдать одно правило – их максимальная рабочая частота должна превышать частоту преобразования. В противном случае КПД выходного выпрямителя и преобразователя в целом значительно снизятся.

Выполнение приведенных рекомендаций дает возможность в кратчайшие сроки и с минимумом проблем и затрат собрать силовую часть высокочастотного импульсного преобразователя для бытовых нужд.

Видео о изготовлении простейшего импульсного питающего устройства

Поделиться:

7 Комментариев


Смотрите также