Трансформатор на схеме обозначение


Обозначение трансформатора на схеме

Содержание:

В электрических схемах очень часто возникает необходимость в повышении или понижении напряжения. Для выполнения таких преобразований существуют специальные устройства – трансформаторы. В конструкцию прибора входят обмотки в количестве две и более, намотанные на ферромагнитный сердечник. Поэтому обозначение трансформатора на схеме осуществляется, исходя из конкретной модели и конструктивных особенностей.

Основные типы и принцип действия трансформаторов

Существуют различные типы трансформаторов, отображаемые соответственно на электрических схемах. Например, при наличии только одной обмотки, такие устройства относятся к категории автотрансформаторов. Основные конструкции этих приборов, в зависимости от сердечника, бывают стержневые, броневые и тороидальные. Они имеют практически одинаковые технические характеристики и различаются лишь по способу изготовления. Каждое устройство, независимо от типа, состоит из трех основных функциональных частей – магнитопровода, обмоток и системы охлаждения.

Схематическое изображение трансформатора тесно связано с принципом его работы. Все особенности конструкции отражаются в электрической схеме. Очень хорошо просматривается первичная и вторичная обмотка. К первичной обмотке поступает ток от внешнего источника, а с вторичной обмотки снимается уже готовое выпрямленное напряжение. Преобразование тока происходит за счет переменного магнитного поля, возникающего в магнитопроводе.

Схематическое обозначение трансформаторов

Изображение трансформаторов на схемах определяется ГОСТами, разработанными еще при СССР. С незначительными изменениями и дополнениями они продолжают действовать и в настоящее время. В этом документе определены все известные виды трансформаторов, автотрансформаторов и их условные графические изображения, которые могут выполняться ручным способом или с помощью специальных компьютерных программ.

Условные графические изображения трансформаторов и автотрансформаторов могут быть построены тремя основными способами:

  • Упрощенная однолинейная схема (чертеж 1) отображает трансформаторные обмотки в виде двух окружностей. Их выводы показываются одной линией, на которую черточками наносится количество этих выводов.
  • Для автотрансформаторов предусмотрена развернутая дуга (чертеж 2), отображающая сторону более высокого напряжения.
  • Упрощенные многолинейные обозначения обмоток трансформаторов и автотрансформаторов (чертежи 3 и 4) такие же, как и на однолинейных схемах.

Исключения составляют обозначения выводов обмоток, представленные в виде отдельных линий. Кроме того, существуют развернутые обозначения обмоток, изображаемые в виде полуокружностей, соединенных в цепочку (). В данной схеме не устанавливается число полуокружностей и направление выводов обмотки. Начало обмотки обозначается точкой .

В зависимости от конструкции, трансформаторы отображаются на схемах следующим образом: трансформатор без магнитопровода с постоянной связью (рисунок 1) и с переменной связью (рисунок 2). Полярность мгновенных значение напряжения (рисунок 3) представлена на примере трансформатора с двумя обмотками и указателями полярности. Трансформаторы с магнитодиэлектрическими магнитопроводами обозначаются как обычный (рисунок 4) и подстраиваемый (рисунок 5).

Существуют и другие схематические обозначения, отображающие количество фаз, расположение отводов, тип соединения (звезда или треугольник) и другие параметры.

  • Чертеж 1 – ступенчатое регулирование трансформатора.
  • Чертеж 2 – однофазный трансформатор с ферромагнитным сердечником. Между обмотками имеется экран.
  • Чертеж 3 – дифференциальный трансформатор. Местом отвода служит средняя точка одной из обмоток.

  • Чертеж 4 – однофазный трансформатор с тремя обмотками и ферромагнитным сердечником.
  • Чертеж 5 – трехфазный трансформатор с ферромагнитным сердечником. Соединение обмоток выполнено звездой. В одном из вариантов может быть вывод средней нейтральной точки.
  • Чертеж 6 – трехфазное устройство с ферромагнитным магнитопроводом (сердечником). Соединение обмоток выполнено по схеме звезда-треугольник с выводом средней нейтральной точки.

  • Чертеж 7 – трансформатор, рассчитанный на три фазы. Обмотки соединяются комбинированно методом звезды и зигзага с выводом средней точки.
  • Чертеж 8 – тип устройства такой же, как и на предыдущих чертежах. Основное соединение – звезда, при необходимости регулировки под нагрузкой используется треугольник-звезда с выводом нейтральной точки.

  • Чертеж 9 – три фазы, три обмотки, соединенные по схеме звезда-звезда.
  • Чертеж 10 – схема вращающегося трансформатора. Таким способом обозначаются обмотки статора и ротора, соединенные между собой. Схема может меняться, в зависимости от конструкции и назначения машины.
  • Чертеж 11 – типовое устройство, в котором одна обмотка соединена звездой, а две другие обмотки – обратными звездами. Из двух обмоток выведены нейтральные точки, соединенные с уравнительным дросселем.

  • Чертеж 12 – группа трансформаторов, состоящая из трех однофазных устройств с двумя обмотками, соединенными по схеме звезда-треугольник.
  • Чертеж 13 – схема однофазного автотрансформатора с ферромагнитным сердечником.
  • Чертеж 14 – однофазный автотрансформатор с функцией регулировки напряжения.

  • Чертеж 15 – трехфазный автотрансформатор с ферромагнитным сердечником и обмотками, соединенные звездой.
  • Чертеж 16 – автотрансформатор на девять выводов.
  • Чертеж 17 – однофазный автотрансформатор с третичной обмоткой.

Существуют и другие конструкции трансформаторных устройств, которые отображаются на электрических схемах:

  • С одной вторичной обмоткой (рисунок 18).
  • Две вторичные обмотки и один магнитопровод (рисунок 19).
  • Два магнитопровода и две вторичные обмотки. Если магнитопроводов более двух, их можно не изображать (рисунок 20).
  • Шинный трансформатор тока с нулевой последовательностью и катушкой подмагничивания (рисунок 21).

Кроме приведенных примеров, обозначение трансформатора на схеме существует и в других вариантах. Более подробно с ними можно ознакомиться в специальных справочниках по электротехнике.

electric-220.ru

ГОСТ 2.723-68 (2002)Обозначения графические в схемах

ГОСТ 2.723—68

УДК 62(084.11):006.354 Группа T52

МЕЖГОСУДАРСТВЕННЫЙ СТАНДАРТ

Единая система конструкторской документации

ОБОЗНАЧЕНИЯ УСЛОВНЫЕ ГРАФИЧЕСКИЕ В СХЕМАХ

Катушки индуктивности, дроссели, трансформаторы, автотрансформаторы

и магнитные усилители

Unified system for design documentation.

Graphic identifications in schemes. Inductive coils, chokes, transformers,

autotransformers and magnetic amplifiers

Дата введения 01.01.71

ИНФОРМАЦИОННЫЕ ДАННЫЕ

1 РАЗРАБОТАН И ВНЕСЕН Комитетом стандартов, мер и измерительных приборов при Совете Министров СССР

2 УТВЕРЖДЕН И ВВЕДЕН В ДЕЙСТВИЕ Постановлением Комитета стандартов, мер и измерительных приборов при Совете Министров СССР от 13.08.68 № 1292

3 ВЗАМЕН ГОСТ 7624—62 в части разд. 11

4 ССЫЛОЧНЫЕ НОРМАТИВНО-ТЕХНИЧЕСКИЕ ДОКУМЕНТЫ

Обозначение НТД, на который дана ссылка

Номер пункта

ГОСТ 2.721—74

2

5 ИЗДАНИЕ (май 2002 г.) с Изменениями № 1, 2, 3, утвержденными в марте 1981 г., июле 1991 г., октябре 1993 г. (ИУС 6—81, 10—91, 5—94)

1a. Настоящий стандарт устанавливает условные графические обозначения катушек индуктивности, дросселей, трансформаторов, автотрансформаторов, трансдукторов и магнитных усилителей на схемах, выполняемых вручную или автоматизированным способом, изделий всех отраслей промышленности и строительства.

(Измененная редакция, Изм. № 3).

1. Устанавливаются три способа построения условных графических обозначений для трансформаторов и автотрансформаторов:

упрощенный однолинейный;

упрощенный многолинейный (форма I);

развернутый (форма II).

2. В упрощенных однолинейных обозначениях обмотки трансформаторов и автотрансформаторов изображают в виде окружностей (черт. 1). Выводы обмоток показывают одной линией с указанием на ней количества выводов в соответствии с требованиями ГОСТ 2.721. В автотрансформаторах сторону высшего напряжения изображают в виде развернутой дуги (черт. 2).

Черт. 1

Черт. 2

Черт. 3

Черт. 4

В настоящем стандарте примеры упрощенных однолинейных обозначений трансформаторов и автотрансформаторов не приведены.

3. В упрощенных многолинейных обозначениях обмотки трансформаторов (черт. 3) и автотрансформаторов (черт. 4) изображают аналогично упрощенным однолинейным обозначениям, показывая выводы обмоток.

4. В развернутых обозначениях обмотки трансформаторов и автотрансформаторов изображают в виде цепочек полуокружностей.

5. Обозначения элементов катушек индуктивности, дросселей, трансформаторов, автотрансформаторов и магнитных усилителей приведены в табл. 1.

Таблица 1

Наименование

Обозначение

Форма I

Форма II

1. Обмотка трансформатора, автотрансформатора, дросселя и магнитного усилителя.

Примечания: 1. Количество полуокружностей в изображении обмотки и направление выводов не устанавливаются

2. При изображении магнитных усилителей, трансдукторов разнесенным способом используют следующие обозначения:

а) рабочая обмотка

б) управляющая обмотка

в) магнитопровод

3. Для указания начала обмотки используют точку

2. Магнитопровод:

а) ферромагнитный

Примечания: 1. Для немагнитного магнитопровода указывают химический символ металла, например, магнитопровод медный

2. Магнитопровод ферритовый (изображают толстой линией)

б) ферромагнитный с воздушным зазором

в) магнитодиэлектрический

Примечание. Количество штрихов в обозначении магнитопровода не устанавливается

г) Исключен. (Изм. № 1)

3. Характер кривой намагничивания отражают при помощи следующих знаков:

а) прямоугольная петля гистерезиса

б) непрямоугольная петля гистерезиса

4. Первичная обмотка трансформатора тока

5. Обмотка запоминающего трансформатора

6. Примеры построения обозначений катушек индуктивности, дросселей, трансформаторов, автотрансформаторов и магнитных усилителей приведены в табл. 2.

Таблица 2

Наименование

Обозначение

Форма I

Форма II

1. Катушка индуктивности, дроссель без магнитопровода

2. Реактор.

Обозначение устанавливается для схем энергоснабжения

3. Катушка индуктивности с отводами

Примечание. Количество полуокружностей в изображении не устанавливается

4. Катушка индуктивности со скользящими контактами (например, двумя)

5. Катушка индуктивности с магнитодиэлектрическим магнитопроводом

6. Катушка индуктивности, подстраиваемая магнитодиэлектрическим проводом

7. Катушка индуктивности, подстраиваемая немагнитным магнитопроводом, например, медным

8. Дроссель с ферромагнитным магнитопроводом

9. Дроссель коаксиальный с ферромагнитным магнитопроводом

9а. Дроссель трехфазного тока с соединением обмоток в звезду

10. Вариометр

11. Гониометр

12. Трансформатор без магнитопровода:

а) с постоянной связью

б) с переменной связью

Примечание. Полярности мгновенных значений напряжений могут быть указаны в форме II, например, трансформатор с двумя обмотками с указателем полярности мгновенных значений напряжения

13. Трансформатор с магнитодиэлектрическим магнитопроводом

14. Трансформатор, подстраиваемый общим магнитодиэлектрическим магнитопроводом

15. Трансформатор, каждая из обмоток которого подстраивается магнитодиэлектрическим магнитопроводом:

а) с постоянной связью

б) с переменной связью

16. Трансформатор со ступенчатым регулированием

17. Трансформатор однофазный с ферромагнитным магнитопроводом и экраном между обмотками

18. Трансформатор дифференциальный (с отводом от средней точки одной обмотки)

19. Трансформатор однофазный с ферромагнитным магнитопроводом трехобмоточный

20. Трансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток звезда — звезда с выведенной нейтральной (средней) точкой

21. Трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда с выведенной нейтральной (средней) точкой — треугольник

22. Трансформатор трехфазный с ферромагнитным магнитопроводом, соединение обмоток звезда — зигзаг с выведенной нейтральной (средней) точкой

23. Трансформатор трехфазный трехобмоточный с ферромагнитным магнитопроводом; соединение обмоток звезда с регулированием под нагрузкой — треугольник — звезда с выведенной нейтральной (средней) точкой

Примечание к пп. 21 — 23. В развернутых обозначениях обмоток трансформаторов (Форма II) допускается наклонное изображение линий связи, например, обмотка трансформатора с соединением обмоток звезда-треугольник

23а. Трансформатор трехфазный трехобмоточный (фазорегулятор); соединение обмоток звезда — звезда

23б. Трансформатор вращающийся, фазовращатель (обозначение соединения обмоток статора и ротора между собой производится в зависимости от назначения машины)

24. Трансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток звезда на одной обмотке — две обратные звезды с выведенными нейтральными (средними) точками на двух обмотках с уравнительным дросселем

24а. Трансформаторная группа из трех однофазных двухобмоточных трансформаторов с соединением обмоток звезда — треугольник

25. Автотрансформатор однофазный с ферромагнитным магнитопроводом

25а. Автотрансформатор однофазный с регулированием напряжения

25б. Регулятор индуктивный однофазный

26. Автотрансформатор трехфазный с ферромагнитным магнитопроводом; соединение обмоток в звезду

26а. Регулятор индуктивный трехфазный

27. Автотрансформатор трехфазный с девятью выводами и ферромагнитным магнитопроводом

28. Автотрансформатор однофазный с третичной обмоткой и ферромагнитным магнитопроводом

29. Автотрансформатор трехфазный с ферромагнитным магнитопроводом, соединением обмоток в звезду с выведенной нейтральной (средней) точкой и третичной обмоткой, соединенной в треугольник

30. Трансформатор тока с одной вторичной обмоткой

31. Трансформатор тока с одним магнитопроводом и двумя вторичными обмотками

32. Трансформатор тока с двумя магнитопроводами и двумя вторичными обмотками.

Примечание. При наличии нескольких магнитопроводов допускается магнитопроводы не изображать

33. Трансформатор тока шинный нулевой последовательности с катушкой подмагничивания

34. Трансформаторы тока в каскадное соединении

35. Трансформатор тока быстронасыщающийся

Примечание к пп. 30—33 и 35. Допускается не зачернять выходные обозначения, расположенные по концам первичной цепи, например, трансформатор тока быстронасыщающийся

35а. Трансформатор с двумя отводами на вторичной обмотке

36. Трансформатор напряжения измерительный

36а. Трансформатор напряжения измерительный с двумя вторичными обмотками

37. Трансформатор с ферромагнитным магнитопроводом и управляющей (подмагничивающей) обмоткой:

а) однофазный

б) трехфазный; соединение обмоток звезда — звезда

37а. Усилитель магнитный. Общее обозначение

38. Усилитель магнитный с двумя рабочими и общей управляющей обмотками.

39. Усилитель магнитный с двумя последовательно соединенными рабочими обмотками и двумя встречно включенными секциями управляющей обмотки

40. Усилитель магнитный с параллельным соединением рабочих обмоток и общей управляющей обмоткой

40а. Усилитель магнитный с прямым самовозбуждением и двумя обмотками управления

41. Усилитель магнитный с четырьмя рабочими и тремя управляющими обмотками

42. Усилитель магнитный трехфазный с тремя рабочими и четырьмя управляющими обмотками

43. Усилитель магнитный с двумя рабочими и общей управляющей обмотками и прямоугольной петлей гистерезиса

44. Элемент ферромагнитный, трансформатор запоминающий, элемент памяти.

Примечания:

1, 2 (Исключены, Изм. № 1)

3. При большом количестве обмоток на магнитопроводе и большом количестве магнитопроводов в схеме допускается использовать следующие обозначения.

В обозначении вертикальная линия означает магнитопровод, горизонтальная — линию электрической связи между обмотками; наклонная черта указывает на наличие обмотки на данном магнитопроводе. Конец наклонной черты, расположенный под линией электрической связи, условно определяет, что соединение произведено с началом обмотки. При прохождении положительного импульса тока слева направо (черт. а) магнитопровод перемагничивается в состояние «1», соответствующее остаточной намагниченности магнитопровода «плюс Вr».

При прохождении положительного импульса тока слева направо (черт. б) магнитопровод перемагничивается в состояние «0», соответствующее остаточной намагниченности магнитопровода «минус Вr», например:

а

б

а) трансформатор запоминающий многообмоточный (например, с 10 обмотками, из которых 2, 4, 5 и 9-я перемагничивают магнитопровод в состояние «1», а 1, 3, 6, 7, 8 и 10-я — в состояние «0»)

б) запоминающее устройство (например, на пяти магнитопроводах)

в) матрица накопительная на ферритовых магнитопроводах

4. Допускается около обозначения обмотки указывать количество витков, например, обмотка с двумя витками.

45. Трансдуктор, общее обозначение

46. Трансдуктор однофазный параллельный

47. Трансдуктор однофазный последовательный

Примечание к пп. 46, 47. Увеличение тока, протекающего по крайним частям управляющих обмоток, обозначенных точками, ведет к увеличению выходной мощности

48. Трансдуктор трехфазный с тремя обмотками управления, управляющий напряжением трехфазного переменного тока в схеме со средней точкой

studfiles.net

Как обозначается трансформатор тока на электрических схемах?

Энергетическое оборудование электрических подстанций организационно разделяется на два вида устройств:

1. силовые цепи, по которым передается вся мощность транспортируемой энергии;

2. вторичные устройства, позволяющие контролировать происходящие процессы в первичной схеме и управлять ими.

Силовое оборудование располагают на открытых площадках или закрытых распределительных устройствах, а вторичное — на релейных панелях, внутри специальных шкафов или отдельных ячеек.

Промежуточным звеном, выполняющим функцию передачи информации между силовой частью и органами измерения, контроля, защит и управления являются измерительные трансформаторы. Они, как и все подобные устройства, имеют две стороны с разным значением напряжения:

1. высоковольтную, которая соответствует параметрам первичной схемы;

2. низковольтную, позволяющую снизить опасность воздействия силового оборудования на обслуживающий персонал и материальные затраты на создание устройств управления и контроля.

Прилагательное «измерительные» отображает назначение этих электротехнических устройств, поскольку они очень точно моделируют все процессы, происходящие на силовом оборудовании, и разделяются на трансформаторы:

1. тока (ТТ);

2. напряжения (ТН).

Они работают по общим физическим принципам трансформации, но обладают различным конструктивным исполнением и способами включения в первичную схему.

Как сделаны и работают трансформаторы тока

Принципы работы и устройства

В конструкцию измерительного трансформатора тока заложено преобразование векторных величин токов больших значений, протекающих по первичной схеме, в пропорционально уменьшенные по величине и точно так же направленные вектора во вторичных цепях.

Устройство магнитопровода

Конструктивно трансформаторы тока, как и любой другой трансформатор, состоит из двух изолированных обмоток, расположенных вокруг общего магнитопровода. Он изготавливается шихтованными металлическими пластинами, для плавки которых используются специальные сорта электротехнических сталей. Это делается для того, чтобы снизить магнитное сопротивление на пути прохождения магнитных потоков, циркулирующих по замкнутому контуру вокруг обмоток и уменьшить потери на вихревые токи.

Трансформатор тока для схем релейных защит и автоматики может иметь не один магнитопровод, а два, отличающиеся количеством пластин и общим объемом используемого железа. Это делается для создания двух типов обмоток, которые могут надежно работать при:

1. номинальных условиях эксплуатации;

2. или при значительных перегрузках, вызванных токами коротких замыканий.

Первые конструкции используются для выполнения измерений, а вторые применяются для подключения защит, отключающих возникающие ненормальные режимы.

Устройство обмоток и клемм подключения

Обмотки трансформаторов тока, рассчитанные и изготовленные на постоянную работу в схеме электроустановки, отвечают требованиям безопасного прохождения тока и его теплового воздействия. Поэтому они выполняются из меди, стали или алюминия с площадью поперечного сечения, исключающей повышенный нагрев.

Поскольку первичный ток всегда больше вторичного, то обмотка для него значительно выделяется своими габаритами, как показано на картинке ниже для правого трансформатора.

На левой и средней конструкции силовой обмотки вообще нет. Вместо нее предусмотрено отверстие в корпусе, через которое пропускается питающий силовой электрический провод или стационарная шина. Такие модели используются, как правило, в электроустановках до 1000 вольт.

На выводах обмоток трансформаторов всегда предусмотрено стационарное крепление для подключения шин и соединительных проводов с помощью болтов и винтовых зажимов. Это одно из ответственных мест, где может быть нарушен электрический контакт, который способен привести к поломкам или нарушениям точной работы измерительной системы. Качеству его затяжки в первичной и вторичной схеме всегда обращается внимание при эксплуатационных проверках.

Клеммы трансформаторов тока маркируются на заводе во время изготовления и обозначаются:

  • Л1 и Л2 для входа и выхода первичного тока;

  • И1 и И2 — вторичного.

Эти индексы означают направление навивки витков относительно друг друга и влияют на правильность подключения силовых и моделируемых цепей, характеристику распределения векторов токов по схеме. На них обращают внимание при первичном монтаже трансформаторов или заменах неисправных устройств и даже исследуют различными методиками электрических проверок как до сборок устройств, так и после монтажа.

Количество витков в первичной W1 и вторичной W2 схеме не одинаково, а сильно отличается. Высоковольтные трансформаторы тока обычно имеют всего одну прямую шину, пропущенную сквозь магнитопровод, которая работает в качестве силовой обмотки. Вторичная же катушка имеет большее количество витков, которое влияет на коэффициент трансформации. Его для удобства эксплуатации записывают дробным выражением номинальных величин токов в обеих обмотках.

Например, запись 600/5 на шильдике корпуса означает, что трансформатор предназначен для включения в цепь высоковольтного оборудования с номинальным током 600 ампер, а во вторичной схеме будет трансформироваться только 5.

Каждый измерительный трансформатор тока включается в свою фазу первичной сети. Количество же вторичных обмоток для устройств релейной защиты и автоматики обычно увеличивается для раздельного использования в кернах токовых цепей для:

  • измерительных приборов;

  • общих зашит;

  • защит шин и ошиновок.

Такой способ позволяет исключить влияние менее ответственных цепочек на более значимые, упростить их обслуживание и проверки на действующем оборудовании, находящемся под рабочим напряжением.

С целью маркировки выводов таких вторичных обмоток применяют обозначение 1И1, 1И2, 1И3 для начал и 2И1, 2И2, 2И3 — концов.

Устройство изоляции

Каждая модель трансформатора тока рассчитана для работы с определенной величиной высоковольтного напряжения на первичной обмотке. Слой изоляции, расположенный между обмотками и корпусом, должен длительно выдерживать потенциал силовой сети своего класса.

С внешней стороны изоляции высоковольтных трансформаторов тока в зависимости от назначения может применяться:

  • фарфоровое покрытие;

  • загустевшие эпоксидные смолы;

  • некоторые виды пластмасс.

Эти же материалы могут быть дополнены трансформаторной бумагой или маслом для изоляции внутренних пересечений проводов на обмотках и исключения межвитковых замыканий.

Класс точности ТТ

Идеально трансформатор теоретически должен работать точно, без внесения погрешностей. Однако, в реальных конструкциях происходят потери энергии на внутренний нагрев проводов, преодоление магнитного сопротивления, образование вихревых токов.

За счет этого хоть немного, но нарушается процесс трансформации, что сказывается на точности воспроизводства в масштабе первичных векторов тока их вторичными величинами с отклонениями ориентации в пространстве. Все трансформаторы тока имеют определенную погрешность измерения, которая нормируется процентным выражением отношения абсолютной погрешности к номинальному значению по амплитуде и углу.

Класс точности трансформаторов тока выражается числовыми значениями «0,2», «0,5», «1», «3», «5»,»10».

Трансформаторы с классом 0,2 работают для выполнения особо важных лабораторных замеров. Класс 0,5 предназначен для точных измерений токов, используемых приборами расчетных учетов 1-го уровня в коммерческих целях.

Измерения тока для работы реле и контрольных учетов 2-го уровня производится классом 1. К трансформаторам тока 10-го класса точности подключаются катушки отключения приводов. Они точно работают в режиме коротких замыканий первичной сети.

Схемы включения ТТ

В энергетике в основном применяются трех или черырехпроводные линии электропередач. Для контроля токов, проходящих по ним, используются разные схемы подключения измерительных трансформаторов.

1. Силовое оборудование

На фотографии показан вариант измерения токов трехпроводной силовой цепи 10 киловольт с помощью двух трансформаторов тока.

Здесь видно, что шины присоединения первичных фаз А и С подключены болтовым соединением к выводам трансформаторов тока, а вторичные цепи спрятаны за ограждение и выведены отдельным жгутом проводов в защитной трубе, которая направляется в релейный отсек для подключения цепей на клеммники.

Этот же принцип монтажа применяется и в других схемах высоковольтного оборудования, как показано на фотографии для сети 110 кВ.

Здесь корпуса измерительных трансформаторов смонтированы на высоте с помощью заземленной железобетонной платформы, что требуют правила безопасности. Подключение первичных обмоток к силовым проводам выполнено в рассечку, а все вторичные цепи выведены в рядом расположенный ящик с клеммной сборкой.

Кабельные соединения вторичных токовых цепей защищены от случайного внешнего механического воздействия металлическими чехлами и бетонными плитами.

2. Вторичные обмотки

Как уже отмечено выше, выходные керны трансформаторов тока собираются для работы с измерительными приборами или защитными устройствами. Это влияет на сборку схемы.

Если необходимо контролировать по амперметрам ток нагрузки в каждой фазе, то используется классический вариант подключения — схема полной звезды.

В этом случае каждый прибор показывает величину тока своей фазы с учетом угла между ними. Использование автоматических самописцев в этом режиме наиболее удобно позволяет отображать вид синусоид и строить по ним векторные диаграммы распределения нагрузок.

Часто на отходящих фидерах 6÷10 кВ в целях экономии устанавливают не три, а два измерительных трансформатора тока без задействования одной фазы В. Этот случай показан на расположенном выше фото. Он позволяет включить амперметры по схеме неполной звезды.

За счет перераспределения токов на дополнительном приборе получается отобразить векторную сумму фаз А и С, которая противоположно направлена вектору фазы В при симметричном режиме нагрузки сети.

Случай включения двух измерительных трансформаторов тока для контроля линейного тока с помощью реле показан на картинке ниже.

Схема полностью позволяет контролировать симметричную нагрузку и трехфазные короткие замыкания. При возникновении двухфазных КЗ, особенно АВ или ВС, чувствительность такого фильтра сильно занижена.

Распространенная схема контроля токов нулевой последовательности создается подключением измерительных трансформаторов тока в схему полной звезды, а обмотки контрольного реле к объединенному проводу нуля.

Ток, проходящий через обмотку создан сложением всех трех векторов фаз. При симметричном режиме он сбалансирован, а во время возникновения однофазных или двухфазных КЗ происходит выделение в реле составляющей дисбаланс величины.

Особенности эксплуатации измерительных трансформаторов тока и их вторичных цепей

Оперативные переключения

При работе трансформатора тока создается баланс магнитных потоков, образованных токами в первичной и вторичной обмотке. В результате они уравновешены по величине, направлены встречно и компенсируют влияние созданных ЭДС в замкнутых цепях.

Если первичную обмотку разомкнуть, то по ней ток перестанет протекать и все вторичные схемы будут просто обесточены. А вот вторичную цепь при прохождении тока по первичной размыкать нельзя, иначе под действием магнитного потока во вторичной обмотке вырабатывается электродвижущая сила, которая не тратится на протекание тока в замкнутом контуре с малым сопротивлением, а используется в режиме холостого хода.

Это приводит к появлению на разомкнутых контактах высокого потенциала, который достигает несколько киловольт и способен пробить изоляцию вторичных цепей, нарушить работоспособность оборудования, нанести электрические травмы обслуживающему персоналу.

По этой причине все переключения во вторичных цепях трансформаторов тока производят по строго определенной технологии и всегда под надзором контролирующих лиц без разрыва токовых цепей. Для этого используют:

  • специальные виды клеммников, позволяющие устанавливать дополнительную закоротку на время разрыва выводимого из работы участка;

  • испытательные токовые блоки с закорачивающими перемычками;

  • специальные конструкции переключателей.

Регистраторы аварийных процессов

Измерительные приборы делят по виду фиксации параметров при:

  • номинальном режиме эксплуатации;

  • возникновении сверхтоков в системе.

Чувствительные элементы регистраторов прямо пропорционально воспринимают поступающий на них сигнал и также отображают его. Если величина тока поступила на их вход с искажением, то эта погрешность будет введена в показания.

По этой причине приборы, предназначенные для измерения аварийных токов, а не номинальных, подключают в керны защит трансформаторов тока, а не измерений.

Об устройстве и принципах работы измерительных трансформаторов напряжения читайте здесь: Измерительные трансформаторы напряжения в схемах релейной защиты и автоматики

Как невозможно читать книгу без знания букв, так невозможно понять ни один электрический чертеж без знания условных обозначений.

В этой статье рассмотрим условные обозначения в электрических схемах: какие бываю, где найти расшифровку, если в проекте она не указана, как правильно должен быть обозначен и подписан тот или иной элемент на схеме.

Но начнем немного издалека… Каждый молодой специалист, который приходит в проектирование, начинает либо со складывания чертежей, либо с чтения нормативной документации, либо нарисуй «вот это» по такому примеру. Вообще, нормативная литература изучается по ходу работы, проектирования.

Невозможно прочитать всю нормативную литературу, относящуюся к твоей специальности или, даже, более узкой специализации. Тем более, что ГОСТ, СНиП и другие нормативы периодически обновляются. И каждому проектировщику приходится отслеживать изменения и новые требования нормативных документов, изменения в линейках производителей электрооборудования, постоянно поддерживать свою квалификацию на должном уровне.

Помните, как Льюиса Кэролла в «Алисе в Стране Чудес»?

«Нужно бежать со всех ног, чтобы только оставаться на месте, а чтобы куда-то попасть, надо бежать как минимум вдвое быстрее!»

Это я не к тому, чтобы поплакаться «как тяжела жизнь проектировщика» или похвастаться «смотрите, какая у нас интересная работа». Речь сейчас не об этом. Учитывая такие обстоятельства, проектировщики перенимают практический опыт от более опытных коллег, многие вещи просто знают как делать правильно, но не знают почему. Работают по принципу «Здесь так заведено».

Порой, это достаточно элементарные вещи. Знаешь, как сделать правильно, но, если спросят «Почему так?», ответить сразу не сможешь, сославшись хотя бы на название нормативного документа.

В этой статье я решил структурировать информацию, касающуюся условных обозначений, разложить всё по полочкам, собрать всё в одном месте.

Виды и типы электрических схем

Прежде, чем говорить об условных обозначения на схемах, нужно разобраться, какие виды и типы схем бывают. С 01.07.2009 на территории РФ введен в действие ГОСТ 2.701-2008 «ЕСКД. Схемы. Виды и типы. Общие требования к выполнению». В соответствии с этим ГОСТ, схемы разделяются на 10 видов:

  1. Схема электрическая
  2. Схема гидравлическая
  3. Схема пневматическая
  4. Схема газовая
  5. Схема кинематическая
  6. Схема вакуумная
  7. Схема оптическая
  8. Схема энергетическая
  9. Схема деления
  10. Схема комбинированная

Виды схем подразделяются на восемь типов:

  1. Схема структурная
  2. Схема функциональная
  3. Схема принципиальная (полная)
  4. Схема соединений (монтажная)
  5. Схема подключения
  6. Схема общая
  7. Схема расположения
  8. Схема объединенная

Меня, как электрика, интересуют схемы вида «Схема электрическая». Вообще, описание и требования к схемам приведены в ГОСТ 2.701-2008 на примере электрических схем, но с 01 января 2012 действует ГОСТ 2.702-2011 «ЕСКД. Правила выполнения электрических схем». Большей частью текст этого ГОСТ дублирует текст ГОСТ 2.701-2008, ссылается на него и другие ГОСТ.

ГОСТ 2.702-2011 подробно описывает требования к каждому виду электрической схемы. При выполнении электрических схем следует руководствоваться именно этим ГОСТ.

ГОСТ 2.702-2011 дает следующее определение понятия электрической схемы: «Схема электрическая — документ, содержащий в виде условных изображений или обозначений составные части изделия, действующие при помощи электрической энергии, и их взаимосвязи». Далее ГОСТ ссылается на документы, регламентирующие правила выполнения условных графических изображения, буквенных обозначений и обозначений проводов и контактных соединений электрических элементов. Рассмотрим каждый отдельно.

Графические обозначения в электрических схемах

В части графических обозначений в электрических схемах ГОСТ 2.702-2011 ссылается на три других ГОСТ:

  • ГОСТ 2.709-89 «ЕСКД. Обозначения условные проводов и контактных соединений электрических элементов, оборудования и участков цепей в электрических схемах».
  • ГОСТ 2.721-74 «ЕСКД. Обозначения условные графические в схемах. Обозначения общего применения»
  • ГОСТ 2.755-87 «ЕСКД. Обозначения условные графические в электрических схемах. Устройства коммутационные и контактные соединения».

Условные графические обозначения (УГО) автоматов, рубильников, контакторов, тепловых реле и прочего коммутационного оборудования, которое используется в однолинейных схемах электрических щитов, определены в ГОСТ 2.755-87.

Однако, обозначение УЗО и дифавтоматов в ГОСТ отсутствует. Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено. А пока, каждый проектировщик изображает УЗО по собственному вкусу, тем более, что ГОСТ 2.702-2011 это предусматривает. Достаточно привести обозначение УГО и его расшифровку в пояснениях к схеме.

Дополнительно к ГОСТ 2.755-87 для полноты схемы понадобится использование изображений из ГОСТ 2.721-74 (в основном для вторичных цепей).

Все обозначения коммутационных аппаратов построены на четырех базовых изображениях:

с использованием девяти функциональных признаков:

Основные условные графические обозначения, используемые в однолинейных схемах электрических щитов:

Наименование Изображение
Автоматический выключатель (автомат)
Выключатель нагрузки (рубильник)
Контакт контактора
Тепловое реле
УЗО
Дифференциальный автомат
Предохранитель
Автоматический выключатель для защиты двигателя (автомат со встроенным тепловым реле)
Выключатель нагрузки с предохранителем (рубильник с предохранителем)
Трансформатор тока
Трансформатор напряжения
Счетчик электрической энергии
Частотный преобразователь
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления автоматически
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вторичного нажатия кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством вытягивания кнопки
Замыкающий контакт нажимного кнопочного выключателя с размыканием и возвратом элемента управления посредством отдельного привода (например, нажатия кнопки-сброс)
Контакт замыкающий с замедлением, действующим при срабатывании
Контакт замыкающий с замедлением, действующим при возврате
Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Контакт размыкающий с замедлением, действующим при срабатывании  
 Контакт размыкающий с замедлением, действующим при возврате  
 Контакт замыкающий с замедлением, действующим при срабатывании и возврате
Катушка контактора, общее обозначение катушки реле
Катушка импульсного реле
Катушка фотореле
Катушка реле времени
Мотор-привод
Лампа осветительная, световая индикация (лампочка)
Нагревательный элемент
Разъемное соединение (розетка):

гнездоштырь

Разрядник
Ограничитель перенапряжения (ОПН), варистор
Разборное соединение (клемма)
Амперметр
Вольтметр
Ваттметр
Частотометр

Обозначения проводов, шин в электрических щитах определяется ГОСТ 2.721-74.

Буквенные обозначения в электрических схемах

Буквенные обозначения определены ГОСТ 2.710-81 «ЕСКД. Обозначения буквенно-цифровые в электрических схемах».

Обозначения дифавтоматов и УЗО в этом ГОСТ отсутствует. На различных сайтах и форумах в интернете долго обсуждали как же правильно обозначать УЗО и дифавтомат. ГОСТ 2.710-81 в п.2.2.12. допускает использование многобуквенных кодов (а не только одно- и двухбуквенных), поэтому до введения нормативного обозначения я для себя принял трехбуквенное обозначение УЗО и дифавтомата. К двухбуквенному обозначению рубильника я добавил букву D и получил обозначение УЗО. Аналогично поступил с дифавтоматом.

Думаю, в скором времени он будет перевыпущен и обозначение УЗО будет добавлено.

Обозначения основных элементов, используемых в однолинейных схемах электрических щитов:

Наименование Обозначение
Автоматический выключатель в силовых цепях QF
Автоматический выключатель в цепях управления SF
Автоматический выключатель с дифференциальной защитой (дифавтомат) QFD
Выключатель нагрузки (рубильник) QS
Устройство защитного отключения (УЗО) QSD
Контактор KM
Тепловое реле F, KK
Реле времени KT
Реле напряжения KV
Фотореле KL
Импульсное реле KI
Разрядник, ОПН FV
Плавкий предохранитель FU
Трансформатор тока TA
Трансформатор напряжения TV
Частотный преобразователь UZ
Амперметр PA
Вольтметр PV
Ваттметр PW
Частотометр PF
Счетчик активной энергии PI
Счетчик реактивной энергии PK
Фотоэлемент BL
Нагревательный элемент EK
Лампа осветительная EL
Прибор световой индикации (лампочка) HL
Штепсельный разъем (розетка) XS
Выключатель или переключатель в цепях управления SA
Выключатель кнопочный в цепях управления SB
Клеммы XT

Изображение электрооборудования на планах

Хотя ГОСТ 2.701-2008 и ГОСТ 2.702-2011 предусматривают вид электрической схемы «схема расположения», при проектировании зданий и сооружений следует руководствоваться ГОСТ 21.210-2014 «СПДС. Изображения условные графические электрооборудования и проводок на планах». Данный ГОСТ устанавливает условные обозначения электропроводок, прокладок шин, шинопроводов, кабельных линий, электрического оборудования (трансформаторов, электрических щитов, розеток, выключателей, светильников) на планах прокладки электрических сетей.

Эти условные обозначения применяются при выполнении чертежей электроснабжения, силового электрооборудования, электрического освещения и других чертежей. Также данные обозначения используются для изображении потребителей в однолинейных принципиальных схемах электрических щитов.

Условные графические изображения электрооборудования, электротехнических устройств и электроприемников

Условные графические обозначения линий проводок и токопроводов

К сожалению, AutoCAD в базовой поставке не содержит все необходимые типы линий.

Проектировщики решают эту проблему по-разному:

  • большинство выполняет отрисовку проводки обычной линией, а потом дополняет обозначениями кружков, квадратиков и пр.;
  • продвинутые пользователи AutoCAD создают собственные типы линий.

Я — сторонник второго способа, т.к. он гораздо удобнее. Если вы используете специальный тип линии, то при её перемещении все «дополнительные» обозначения также перемещаются, ведь они часть линии.

Создать собственный тип линии в AutoCAD достаточно просто. Вы потратите некоторое время на освоение этого навыка, зато сэкономите потом массу времени при проектировании.

Изображение вертикальной прокладки удобнее всего сделать при помощи блоков AutoCAD, а лучше при помощи динамических блоков.

Условные графические изображения шин и шинопроводов

Отрисовку шин и шинопроводов в AutoCAD удобно выполнять при помощи полилинии и/или динамических блоков.

Условные графические изображения коробок, шкафов, щитов и пультов

Наименование Изображение
Коробка ответвительная
Коробка вводная
Коробка протяжная, ящик протяжной
Коробка, ящик с зажимами
Шкаф распределительный
Щиток групповой рабочего освещения
Щиток групповой аварийного освещения
Щиток лабораторный
Ящик с аппаратурой
Ящик управления
Шкаф, панель, пульт, щиток одностороннего обслуживания, пост местного управления
Шкаф, панель двухстороннего обслуживания
Шкаф, щит, пульт из нескольких панелей одностороннего обслуживания
Шкаф, щит, пульт из нескольких панелей двухстороннего обслуживания
Щит открытый
Ящик трансформаторный понижающий (ЯТП)

Отрисовку в AutoCAD удобно выполнять при помощи блоков и динамических блоков.

Условные графические обозначения выключателей, переключателей

ГОСТ 21.210-2014 не предусматривает условных изображения для светорегуляторов (диммеров) и отдельного изображения для кнопочных выключателей, поэтому я ввёл для них собственные обозначения в соответствии с п.4.7.

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов выключателей.

Условные графические обозначения штепсельных розеток

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков. Я себе сделал один динамический блок для всех типов розеток.

Условные графические обозначения светильников и прожекторов

Радует, что в обновленной версии ГОСТ добавлены изображения светодиодных светильников и светильников с компактными люминесцентными лампами.

Отрисовку светильников в AutoCAD удобно выполнять при помощи динамических блоков.

Условные графические обозначения аппаратов контроля и управления

Отрисовку в AutoCAD удобно выполнять при помощи динамических блоков.

Подпишитесь и получайте уведомления о новых статьях на e-mail

Умение читать электросхемы – это важная составляющая, без которой невозможно стать специалистом в области электромонтажных работ. Каждый начинающий электрик обязательно должен знать, как обозначаются на проекте электропроводки розетки, выключатели, коммутационные аппараты и даже счетчик электроэнергии в соответствии с ГОСТ. Далее мы предоставим читателям сайта

Сам Электрик

условные обозначения в электрических схемах, как графические, так и буквенные.

Графические

Что касается графического обозначения всех элементов, используемых на схеме, этот обзор мы предоставим в виде таблиц, в которых изделия будут сгруппированы по назначению.

В первой таблице Вы можете увидеть, как отмечены электрические коробки, щиты, шкафы и пульты на электросхемах:

Следующее, что Вы должны знать – условное обозначение питающих розеток и выключателей (в том числе проходных) на однолинейных схемах квартир и частных домов:

Что касается элементов освещения, светильники и лампы по ГОСТу указывают следующим образом:

В более сложных схемах, где применяются электродвигатели, могут указываться такие элементы, как:

Также полезно знать, как графически обозначаются трансформаторы и дроссели на принципиальных электросхемах:

Электроизмерительные приборы по ГОСТу имеют следующее графические обозначение на чертежах:

А вот, кстати, полезная для начинающих электриков таблица, в которой показано, как выглядит на плане электропроводки контур заземления, а также сама силовая линия:

Помимо этого на схемах Вы можете увидеть волнистую либо прямую линию, «+» и «-», которые указывают на род тока, напряжение и форму импульсов:

В более сложных схемах автоматизации Вы можете встретить непонятные графические обозначения, вроде контактных соединений. Запомните, как обозначаются этим устройства на электросхемах:

Помимо этого Вы должны быть в курсе, как выглядят радиоэлементы на проектах (диоды, резисторы, транзисторы и т.д.):

Вот и все условно графические обозначения в электрических схемах силовых цепей и освещения. Как уже сами убедились, составляющих довольно много и запомнить, как обозначается каждый можно только с опытом. Поэтому рекомендуем сохранить себе все эти таблицы, чтобы при чтении проекта планировки проводки дома либо квартиры Вы могли сразу же определить, что за элемент цепи находится в определенном месте.

Интересное видео по теме:

Буквенные

Мы уже рассказывали Вам, как расшифровать маркировку проводов и кабелей. В однолинейных электросхемах также присутствуют свои буквы, которые дают понять, что включено в сеть. Итак, согласно ГОСТ 7624-55, буквенное обозначение элементов на электрических схемах выглядит следующим образом:

  1. Реле тока, напряжения, мощности, сопротивления, времени, промежуточное, указательное, газовое и с выдержкой по времени, соответственно – РТ, РН, РМ, РС, РВ, РП, РУ, РГ, РТВ.
  2. КУ – кнопка управления.
  3. КВ – конечный выключатель.
  4. КК – командо-контроллер.
  5. ПВ – путевой выключатель.
  6. ДГ – главный двигатель.
  7. ДО – двигатель насоса охлаждения.
  8. ДБХ – двигатель быстрых ходов.
  9. ДП – двигатель подач.
  10. ДШ – двигатель шпинделя.

Помимо этого в отечественной маркировке элементов радиотехнических и электрических схем выделяют следующие буквенные обозначения:

На этом краткий обзор условных обозначений в электрических схемах закончен. Надеемся, теперь Вы знаете, как обозначаются розетки, выключатели, светильники и остальные элементы цепи на чертежах и планах жилых помещений.

Также читают:

  • Как работает магнитный пускатель
  • Какие бывают электрические схемы
  • Как рассчитать количество кабеля для электропроводки

otoplenie-help.ru

Чтение схем: трансформаторы, автотрансформаторы. | Каталог самоделок

В основы обозначений трансформаторов и автотрансформаторов на электротехнических схемах принимаются обозначения обмоток, корпуса, магнитопроводов,  экрана, а также и обозначения типов соединения обмоток. Давайте все это рассмотрим поподробнее.

Обмотки.   В схемах (обычно в схемах электроснабжения) обмотки обозначают в виде окружности, которая проиллюстрирована на  рис. № 1.  Во всех других случаях обмотки иллюстрируются полуокружностями №№ 2-5, причем количество полуокружностей и направления выводов не устанавливается. А изображенная на рис № 3 точка, рядом с обмоткой, обозначает начало обмотки.

На электротехнических схемах, при изображении обмоток окружностями, иногда, в них вписываются обозначения №№ 13-23   вида соединения, которые приведены на рисунке ниже. Здесь под обозначениями, которые состоят из черточек, приведены поясняющие схемы.

На рисунке: № 13  – однофазная обмотка с двумя выводами. № 14 – однофазная обмотка с двумя выводами  с выведенной нейтральной (средней) точкой. № 15  – соединение обмоток двух фаз в открытый треугольник. № 16 – три однофазные обмотки, каждая из которых имеет по два вывода.  № 17 – трехфазная обмотка, соединенная в «звезду». № 18  – также трехфазная обмотка, соединенная в звезду с выведенной нейтралью. № 19  трехфазная обмотка, соединенная в треугольник. № 20 – трехфазная обмотка, где три фазы соединены в разомкнутый треугольник. № 21 – трехфазная обмотка, соединенная в зигзаг. № 22 – шестифазная обмотка, которая соединена в виде обратной звезды. № 23 – то же, что и № 22, только с выведенными раздельными нейтральными точками.

Магнитопроводы. В схемах электроснабжения магнитопроводы допускается не иллюстрировать, если это, конечно, не вызывает затруднений и путаницу в схемах. Во всех других случаях этот элемент изображается обозначениями №№ 7—10. Здесь №7 — магнитопровод ферромагнитный.

(Обратите внимание: до недавнего времени у магнитопровода было другое обозначение: 3 – тонкие черты, как бы представляющие листы стали, из которых набран магнитопровод). Затем магнитопровод стали изображать жирной чертой. В настоящее время у обозначений, толщина линий, обозначающих магнитопровод и обмотку, одинакова.

№ 8 — ферромагнитный магнитопровод с воздушным зазором. Небольшой воздушный зазор нужен в том случае, когда по обмотке проходит не только переменный, но и постоянный ток, который при отсутствии зазора мог бы насытить магнитопровод;

№ 9 — магнитодиэлектрический магнитопровод. Такие магнитопроводы применяются в радиосвязи для уменьшения потерь на вихревые токи. В этих сердечниках ферромагнитные частицы разделены массой изоляционного материала.

№ 10 — магнитопровод из немагнитного материала, например из алюминия или меди. Для немагнитного магнитопровода указывают химический символ металла. Например, буквы Cu указывают на то, что магнитопровод медный. Магнитопровод из немагнитного материала играет такую же роль, как множество короткозамкнутых витков, введенных в магнитное поле обмотки. В немагнитном магнитопроводе водятся вихревые токи, магнитное поле которых противодействует основному полю, чем достигается уменьшение индуктивности.

Корпус трансформатора и автотрансформатора – на схемах обычно не изображается. Если же надо показать, что корпус присоединен к чему-либо, то это иллюстрируется обозначением № 12. Нередко корпус трансформатора соединяется с экраном.  Корпуса трансформаторов приходится так же показывать и в некоторых схемах релейной защиты.  Экран обозначается тонкой штриховой линией № 6. Подробнее про обозначения экранов, можете прочитать тут.

На обозначении № 11 проиллюстрирован регулятор, здесь он показывает, что в сборке имеется трансформаторы с регулированием напряжения с нагрузкой.

Примеры обозначений трансформаторов даны на рисунке ниже.

В разделе «а» показано однолинейное – 1, и многолинейное  – 2 обозначение однофазного трансформатора с ферромагнитным сердечником (форма I). № 3 – изображение этого же трансформатора в форме II.  В разделе «б»   изображены: № 4 – трансформатор с ферромагнитным магнитопроводом, который имеет воздушный зазор. № 5   трансформатор с медным (немагнитным) магнитопроводом. № 6 – трансформатор магнитодиэлектрическим магнитопроводом. № 7 – без магнитопровода.

Автотрансформаторы. Однофазный автотрансформатор в однолинейном и многолинейном изображениях проиллюстрирован ниже на рисунке по обозначениями 1 и 2 соответственно. Хорошим примером применения этих однофазных трансформаторов является: № 3 понижения напряжения сети с 220 вольт для питания прибора (например, холодильника) на напряжение в 127 вольт. № 4 показывает повышение напряжения с 127 до 220 В. Также в разделе «б» изображены трехфазные автотрансформаторы, где № 5 показывает, что обмотки соединены в звезду, а № 6 – трехфазный трансформатор с 9-ю выводами.

Как Вы видите, чтение схем не очень то и тяжелая вещь, самое главное уметь логически связать обозначения.

volt-index.ru


Смотрите также